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The cannonball problem is a very old but interesting problem. It asks when a square-pyramidal stack of
cannonballs can be arranged into a square. The claim is the following:

Theorem 1. The only solutions occur when you have 0, 1 or 4900 = 702 cannonballs.

Many people have solved this problem using different theories. Some in elementary ways, using simul-
taneous Pell equations and similar constructions. Others have used lattices. I propose a solution using the
beautiful theory of elliptic curves.

First we note that since:
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

we find that (valid) solutions to the cannonball problem correspond to (positive) integral points on the
“elliptic curve”:

E1 : y2 =
x(x+ 1)(2x+ 1)

6
,

defined over the number field Q. This is not in Weierstrass form so the first task is to find a morphism from
this curve into one that is in Weierstrass form. However we would like more. We would like such a morphism
that preserves integer points (only in one direction though) and is such that the resulting curve is an integer
model, so that we may use more theory.

Lemma 2. Let E2 be the elliptic curve defined by y2 = x3 − 36x. The morphism defined by φ(X,Y ) =
(12x+6, 72y) gives a bijection φ : E2(Q) −→ E1(Q) (although not an isogeny so not a group homomorphism).
Further the inverse takes integer points of E1 into integer points of E2.

Proof. This is trivial to see.

Now we are able to solve the cannonball problem since we have computational tools for calculating the
integer points of (integral) elliptic curves. We are wanting to obtain integer solutions to the cannonball
problem, and by the above these must correspond to some subset of the integral points on E2. We know that
this set of points is finite by Siegel’s Theorem.

The plan is now obvious, compute the (finitely many) integral points on E2 and then invert them using φ
to give (possibly rational) points on E1. The remaining (positive) integral points then give the only solutions
of the cannonball problem.

If I do this using certain S-integer algorithms in SAGE/PARI/MAGMA then I find the following:

Theorem 3. The only integer points on E2 are:

{(−6, 0), (−3,±9), (−2,±8), (0, 0), (6, 0), (12,±36), (18,±72), (294,±5040)}.

Inverting φ gives the following points on E1:

{(−1, 0), (−3

4
,±1

8
), (−2

3
,±1

9
), (−1

2
, 0), (0, 0), (

1

2
,±1

2
), (1,±1), (24,±70)},

from which we see immediately that the only solutions to the cannonball problem are when you have 0, 1 or
702 = 4900 cannonballs.
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