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Kissing number problem

Given a unit sphere in Rn, what is the maximum number of
non-overlapping unit spheres I can place around it, each
touching the original sphere?

We only know exact answers for dimensions 1,2,3,4,8 and 24!
In this talk we will see how modular forms become useful in
providing the answer in 24 dimensions.
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A lattice is a discrete subset Λ ⊆ Rn of the form:

Λ = Zv1 ⊕ Zv2 ⊕ ...⊕ Zvn,

for some basis v1, v2, ..., vn of Rn.

Lattices provide regular sphere packings (take the coordinates
of each lattice vector as the center of a sphere).

In particular due to the translational symmetry each lattice has
a well defined Kissing number KΛ.
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A modular form of weight k ∈ N is a holomorphic function
f : H → C such that:

f
(

az+b
cz+d

)
= (cz + d)k f (z) for all

(
a b
c d

)
∈ SL2(Z),

f is “holomorphic at infinity”.

In particular
(

1 1
0 1

)
∈ SL2(Z) and so f (z + 1) = f (z) for all z.

Thus modular forms have Fourier expansions in q = e2πiz :

f (z) = a0 + a1q + a2q2 + ...
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Why do number theorists care about modular forms?

Fourier coefficients often contain number theoretic data
(power divisor sums, values of Riemann Zeta function etc).

They have many connections with other objects. For
example their links with elliptic curves allowed Fermat’s
Last Theorem to be proved.

Simple to compute with: the set of modular forms of weight
k forms a finite dimensional C-vector space, Mk .



Lattices and the kissing number Modular Forms Return to the kissing number

Why do number theorists care about modular forms?

Fourier coefficients often contain number theoretic data
(power divisor sums, values of Riemann Zeta function etc).

They have many connections with other objects. For
example their links with elliptic curves allowed Fermat’s
Last Theorem to be proved.

Simple to compute with: the set of modular forms of weight
k forms a finite dimensional C-vector space, Mk .



Lattices and the kissing number Modular Forms Return to the kissing number

Why do number theorists care about modular forms?

Fourier coefficients often contain number theoretic data
(power divisor sums, values of Riemann Zeta function etc).

They have many connections with other objects. For
example their links with elliptic curves allowed Fermat’s
Last Theorem to be proved.

Simple to compute with: the set of modular forms of weight
k forms a finite dimensional C-vector space, Mk .



Lattices and the kissing number Modular Forms Return to the kissing number

Why do number theorists care about modular forms?

Fourier coefficients often contain number theoretic data
(power divisor sums, values of Riemann Zeta function etc).

They have many connections with other objects. For
example their links with elliptic curves allowed Fermat’s
Last Theorem to be proved.

Simple to compute with: the set of modular forms of weight
k forms a finite dimensional C-vector space, Mk .



Lattices and the kissing number Modular Forms Return to the kissing number

Examples include:
Eisenstein series. For even k ≥ 4:

Ek =
1

2ζ(k)

∑
(m,n)∈Z2\(0,0)

1
(mz + n)k

= 1− 2k
Bk

∞∑
n=1

σk−1(n)qn ∈ Mk

.
The Discriminant function:

∆(z) = q
∞∏

n=1

(1− qn)24

=
∞∑

n=1

τ(n)qn ∈ M12,

where τ(n) is known as Ramanujan’s tau function.
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A lattice Λ is integral if 〈u, v〉 ∈ Z for all u, v ∈ Λ. Further Λ is
even if ||v ||2 ∈ 2Z.

Given an integral lattice we may associate to it a book-keeping
device for the norms called a theta series:

θΛ(z) =
∞∑

n=0

rΛ(n)q
n
2 ,

where rΛ(n) is the number of v ∈ Λ such that ||v ||2 = n.

It is clear that the kissing number KΛ is then the first non-zero
rΛ(n) for n ≥ 1.
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For example:

θZ(z) = 1 + 2
∞∑

n=1

q
n2
2 = 1 + 2q

1
2 + 2q2 + 2q

9
2 + ...

θZ(1,0)⊕Z(0,1)(z) = 1 +
∞∑

n=1

r2(n)q
n
2 = 1 + 4q

1
2 + 4q + ...

(where r2(n) is the number of ways of expressing n as a sum of
two squares).

If Λ ⊆ Rk is a “unimodular”, even, integral lattice (from now on
referred to as “nice”) then θΛ(z) ∈ M k

2
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It turns out that in 24 dimensions there exists a “nice” lattice
ΛLeech such that rΛLeech (0) = 1 and rΛLeech (2) = 0.

By the power of modular forms this is actually enough
information to work out rΛLeech (n) for all n.

Why? Well we happen to know that:

θΛLeech (z) ∈ M12 = CE12 ⊕ C∆.

Thus θΛLeech (z) = αE12 + β∆ for some α, β ∈ C. Comparing the
first two coefficients of the Fourier series of both sides gives
α = 1 and β = −65520

691 .
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Thus for all n ≥ 1:

rΛLeech (2n) =
65520(σ11(n)− τ(n))

691
.

In particular rΛLeech (4) = 196560 6= 0 so we must have
KΛLeech = 196560.

But known upper bounds for kissing numbers give exactly
196560 in 24 dimensions, so this is an equality!
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Thanks for listening!
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