The magic of modular forms

Dan Fretwell University of Sheffield

20th November 2014

Outline of talk

- Lattices and the kissing number
- Modular Forms
- Return to the kissing number

Kissing number problem

Given a unit sphere in \mathbb{R}^n , what is the maximum number of non-overlapping unit spheres I can place around it, each touching the original sphere?

We only know exact answers for dimensions 1, 2, 3, 4, 8 and 24! In this talk we will see how modular forms become useful in providing the answer in 24 dimensions.

Kissing number problem

Given a unit sphere in \mathbb{R}^n , what is the maximum number of non-overlapping unit spheres I can place around it, each touching the original sphere?

We only know exact answers for dimensions 1, 2, 3, 4, 8 and 24! In this talk we will see how modular forms become useful in providing the answer in 24 dimensions.

A lattice is a discrete subset $\Lambda \subseteq \mathbb{R}^n$ of the form:

$$\Lambda = \mathbb{Z} v_1 \oplus \mathbb{Z} v_2 \oplus ... \oplus \mathbb{Z} v_n,$$

for some basis $v_1, v_2, ..., v_n$ of \mathbb{R}^n .

Lattices provide regular sphere packings (take the coordinates of each lattice vector as the center of a sphere).

In particular due to the translational symmetry each lattice has a well defined Kissing number K_{Λ} .

A lattice is a discrete subset $\Lambda \subseteq \mathbb{R}^n$ of the form:

$$\Lambda = \mathbb{Z}v_1 \oplus \mathbb{Z}v_2 \oplus ... \oplus \mathbb{Z}v_n,$$

for some basis $v_1, v_2, ..., v_n$ of \mathbb{R}^n .

Lattices provide regular sphere packings (take the coordinates of each lattice vector as the center of a sphere).

In particular due to the translational symmetry each lattice has a well defined Kissing number K_{Λ} .

Outline of talk

- Lattices and the kissing number
- 2 Modular Forms
- Return to the kissing number

A modular form of weight $k \in \mathbb{N}$ is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that:

•
$$f\left(\frac{az+b}{cz+d}\right)=(cz+d)^kf(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathrm{SL}_2(\mathbb{Z}),$

• *f* is "holomorphic at infinity".

In particular
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$$
 and so $f(z+1) = f(z)$ for all z .

Thus modular forms have Fourier expansions in $q=e^{2\pi i z}$

$$f(z) = a_0 + a_1 q + a_2 q^2 + \dots$$

A modular form of weight $k \in \mathbb{N}$ is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that:

•
$$f\left(\frac{az+b}{cz+d}\right)=(cz+d)^k f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathrm{SL}_2(\mathbb{Z}),$

• f is "holomorphic at infinity".

In particular
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$$
 and so $f(z+1) = f(z)$ for all z .

Thus modular forms have Fourier expansions in $q = e^{2\pi iz}$:

$$f(z) = a_0 + a_1 q + a_2 q^2 + \dots$$

- Fourier coefficients often contain number theoretic data (power divisor sums, values of Riemann Zeta function etc).
- They have many connections with other objects. For example their links with elliptic curves allowed Fermat's Last Theorem to be proved.
- Simple to compute with: the set of modular forms of weight k forms a finite dimensional \mathbb{C} -vector space, M_k .

- Fourier coefficients often contain number theoretic data (power divisor sums, values of Riemann Zeta function etc).
- They have many connections with other objects. For example their links with elliptic curves allowed Fermat's Last Theorem to be proved.
- Simple to compute with: the set of modular forms of weight k forms a finite dimensional \mathbb{C} -vector space, M_k .

- Fourier coefficients often contain number theoretic data (power divisor sums, values of Riemann Zeta function etc).
- They have many connections with other objects. For example their links with elliptic curves allowed Fermat's Last Theorem to be proved.
- Simple to compute with: the set of modular forms of weight k forms a finite dimensional C-vector space, M_k.

- Fourier coefficients often contain number theoretic data (power divisor sums, values of Riemann Zeta function etc).
- They have many connections with other objects. For example their links with elliptic curves allowed Fermat's Last Theorem to be proved.
- Simple to compute with: the set of modular forms of weight k forms a finite dimensional \mathbb{C} -vector space, M_k .

Examples include:

• Eisenstein series. For even $k \ge 4$:

$$E_{k} = \frac{1}{2\zeta(k)} \sum_{(m,n) \in \mathbb{Z}^{2} \setminus (0,0)} \frac{1}{(mz+n)^{k}}$$
$$= 1 - \frac{2k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \in M_{k}$$

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$
$$= \sum_{n=1}^{\infty} \tau(n) q^n \in M_{12},$$

where $\tau(n)$ is known as Ramanujan's tau function.

Examples include:

Eisenstein series. For even k ≥ 4:

$$E_{k} = \frac{1}{2\zeta(k)} \sum_{(m,n) \in \mathbb{Z}^{2} \setminus (0,0)} \frac{1}{(mz+n)^{k}}$$
$$= 1 - \frac{2k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \in M_{k}$$

• The Discriminant function:

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$
$$= \sum_{n=1}^{\infty} \tau(n) q^n \in M_{12},$$

where $\tau(n)$ is known as Ramanujan's tau function.

Outline of talk

- 1 Lattices and the kissing number
- 2 Modular Forms
- Return to the kissing number

A lattice Λ is integral if $\langle u, v \rangle \in \mathbb{Z}$ for all $u, v \in \Lambda$. Further Λ is even if $||v||^2 \in 2\mathbb{Z}$.

Given an integral lattice we may associate to it a book-keeping device for the norms called a theta series:

$$\theta_{\Lambda}(z) = \sum_{n=0}^{\infty} r_{\Lambda}(n) q^{\frac{n}{2}},$$

where $r_{\Lambda}(n)$ is the number of $v \in \Lambda$ such that $||v||^2 = n$.

It is clear that the kissing number K_{Λ} is then the first non-zero $r_{\Lambda}(n)$ for $n \geq 1$.

A lattice Λ is integral if $\langle u, v \rangle \in \mathbb{Z}$ for all $u, v \in \Lambda$. Further Λ is even if $||v||^2 \in 2\mathbb{Z}$.

Given an integral lattice we may associate to it a book-keeping device for the norms called a theta series:

$$\theta_{\Lambda}(z) = \sum_{n=0}^{\infty} r_{\Lambda}(n) q^{\frac{n}{2}},$$

where $r_{\Lambda}(n)$ is the number of $v \in \Lambda$ such that $||v||^2 = n$.

It is clear that the kissing number K_{Λ} is then the first non-zero $r_{\Lambda}(n)$ for $n \geq 1$.

A lattice Λ is integral if $\langle u, v \rangle \in \mathbb{Z}$ for all $u, v \in \Lambda$. Further Λ is even if $||v||^2 \in 2\mathbb{Z}$.

Given an integral lattice we may associate to it a book-keeping device for the norms called a theta series:

$$\theta_{\Lambda}(z) = \sum_{n=0}^{\infty} r_{\Lambda}(n) q^{\frac{n}{2}},$$

where $r_{\Lambda}(n)$ is the number of $v \in \Lambda$ such that $||v||^2 = n$.

It is clear that the kissing number K_{Λ} is then the first non-zero $r_{\Lambda}(n)$ for $n \geq 1$.

For example:

$$\theta_{\mathbb{Z}}(z) = 1 + 2\sum_{n=1}^{\infty} q^{\frac{n^2}{2}} = 1 + 2q^{\frac{1}{2}} + 2q^2 + 2q^{\frac{9}{2}} + \dots$$

$$\theta_{\mathbb{Z}(1,0)\oplus\mathbb{Z}(0,1)}(z) = 1 + \sum_{n=1}^{\infty} r_2(n)q^{\frac{n}{2}} = 1 + 4q^{\frac{1}{2}} + 4q + \dots$$

(where $r_2(n)$ is the number of ways of expressing n as a sum of two squares).

If $\Lambda \subseteq \mathbb{R}^k$ is a "unimodular", even, integral lattice (from now or referred to as "nice") then $\theta_\Lambda(z) \in M_{\frac{k}{\alpha}}$

For example:

$$\theta_{\mathbb{Z}}(z) = 1 + 2\sum_{n=1}^{\infty} q^{\frac{n^2}{2}} = 1 + 2q^{\frac{1}{2}} + 2q^2 + 2q^{\frac{9}{2}} + \dots$$

$$\theta_{\mathbb{Z}(1,0)\oplus\mathbb{Z}(0,1)}(z) = 1 + \sum_{n=1}^{\infty} r_2(n)q^{\frac{n}{2}} = 1 + 4q^{\frac{1}{2}} + 4q + \dots$$

(where $r_2(n)$ is the number of ways of expressing n as a sum of two squares).

If $\Lambda \subseteq \mathbb{R}^k$ is a "unimodular", even, integral lattice (from now or referred to as "nice") then $\theta_\Lambda(z) \in M_{\frac{k}{\alpha}}$

For example:

$$\theta_{\mathbb{Z}}(z) = 1 + 2\sum_{n=1}^{\infty} q^{\frac{n^2}{2}} = 1 + 2q^{\frac{1}{2}} + 2q^2 + 2q^{\frac{9}{2}} + \dots$$

$$\theta_{\mathbb{Z}(1,0)\oplus\mathbb{Z}(0,1)}(z) = 1 + \sum_{n=1}^{\infty} r_2(n)q^{\frac{n}{2}} = 1 + 4q^{\frac{1}{2}} + 4q + \dots$$

(where $r_2(n)$ is the number of ways of expressing n as a sum of two squares).

If $\Lambda\subseteq\mathbb{R}^k$ is a "unimodular", even, integral lattice (from now on referred to as "nice") then $\theta_\Lambda(z)\in M_{\frac{k}{2}}$

It turns out that in 24 dimensions there exists a "nice" lattice Λ_{Leech} such that $r_{\Lambda_{Leech}}(0)=1$ and $r_{\Lambda_{Leech}}(2)=0$.

By the power of modular forms this is actually enough information to work out $r_{\Lambda_{Leech}}(n)$ for all n.

Why? Well we happen to know that:

$$\theta_{\Lambda_{Leech}}(z) \in M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta.$$

Thus $\theta_{\Lambda_{Leech}}(z) = \alpha E_{12} + \beta \Delta$ for some $\alpha, \beta \in \mathbb{C}$. Comparing the first two coefficients of the Fourier series of both sides gives $\alpha = 1$ and $\beta = -\frac{65520}{691}$.

It turns out that in 24 dimensions there exists a "nice" lattice Λ_{Leech} such that $r_{\Lambda_{Leech}}(0)=1$ and $r_{\Lambda_{Leech}}(2)=0$.

By the power of modular forms this is actually enough information to work out $r_{\Lambda_{Leech}}(n)$ for all n.

Why? Well we happen to know that:

$$\theta_{\Lambda_{Leech}}(z) \in M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta.$$

Thus $\theta_{\Lambda_{Leech}}(z) = \alpha E_{12} + \beta \Delta$ for some $\alpha, \beta \in \mathbb{C}$. Comparing the first two coefficients of the Fourier series of both sides gives $\alpha = 1$ and $\beta = -\frac{65520}{691}$.

It turns out that in 24 dimensions there exists a "nice" lattice Λ_{Leech} such that $r_{\Lambda_{Leech}}(0)=1$ and $r_{\Lambda_{Leech}}(2)=0$.

By the power of modular forms this is actually enough information to work out $r_{\Lambda_{Leech}}(n)$ for all n.

Why? Well we happen to know that:

$$\theta_{\Lambda_{Leech}}(z) \in \mathit{M}_{12} = \mathbb{C}\mathit{E}_{12} \oplus \mathbb{C}\Delta.$$

Thus $\theta_{\Lambda_{Leech}}(z) = \alpha E_{12} + \beta \Delta$ for some $\alpha, \beta \in \mathbb{C}$. Comparing the first two coefficients of the Fourier series of both sides gives $\alpha = 1$ and $\beta = -\frac{65520}{691}$.

Thus for all n > 1:

$$r_{\Lambda_{Leech}}(2n) = \frac{65520(\sigma_{11}(n) - \tau(n))}{691}.$$

In particular $r_{\Lambda_{Leech}}(4) = 196560 \neq 0$ so we must have $K_{\Lambda_{Leech}} = 196560$.

But known upper bounds for kissing numbers give exactly 196560 in 24 dimensions, so this is an equality!

Thus for all n > 1:

$$r_{\Lambda_{Leech}}(2n) = \frac{65520(\sigma_{11}(n) - \tau(n))}{691}.$$

In particular $r_{\Lambda_{Leech}}(4)=196560\neq 0$ so we must have $K_{\Lambda_{Leech}}=196560$.

But known upper bounds for kissing numbers give exactly 196560 in 24 dimensions, so this is an equality!

Thanks for listening!