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A large part of number theory is concerned with solving
Diophantine equations, polynomial equations to be solved over
the integers (Z) or the rationals (Q).

For example in two variables we can use modular arithmetic to
solve (over Z):

1 Linear Diophantine equations: ax + by = c for a,b, c ∈ Z,
2 Quadratic Diophantine equations: conics of the form

ax2 + bxy + cy2 = d for a,b, c,d ∈ Z.
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A non-trivial Diophantine

Simple sounding problems can produce more difficult
Diophantines though!

Congruent Number Problem (CNP)
Which positive integers can be the area of a right angled
triangle?

This question is boring if we allow real valued side lengths but
becomes very interesting if we only allow rational side lengths.

For example 6 is the area of a (3,4,5)-triangle and 5 is the area
of a (20

3 ,
3
2 ,

41
6 )-triangle. We call 5 and 6 congruent numbers.

Fermat was able to prove that 1 is not a congruent number!
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We have the following theorem about congruent numbers:

Theorem
Let d be a positive integer.

Then d is a congruent number if and only if the Diophantine
equation y2 = x3 − d2x has infinitely many rational solutions.

Problem: How does one show such an equation has infinitely
many rational solutions?



Motivation Elliptic Curves The Sato-Tate Conjecture

We have the following theorem about congruent numbers:

Theorem
Let d be a positive integer.

Then d is a congruent number if and only if the Diophantine
equation y2 = x3 − d2x has infinitely many rational solutions.

Problem: How does one show such an equation has infinitely
many rational solutions?



Motivation Elliptic Curves The Sato-Tate Conjecture

The Cannonball Problem

Another example is the following problem:

The Cannonball Problem
Imagine you have a square-pyramidal stack of cannonballs.
How many must you have to be able to rearrange into a
square?

Solution

You must have exactly 1 or 4900 = 702 cannonballs.

It turns out that the above solution arises from studying the
integer solutions of the Diophantine equation y2 = x3 − 36x .
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What is an Elliptic Curve?

For the purposes of this talk, elliptic curves are a special family
of cubic curves that are of the form:

y2 = x3 + Ax + B,

where A,B ∈ Z are such that 4A3 + 27B2 6= 0.

The second condition looks baffling but it just guarantees the
cubic has distinct roots. It turns out that if you fail this condition
then your curve is basically ”the same” as a line and so is much
simpler for us to handle.
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Applications

Elliptic curves have been found to be very popular in the past
30-40 years. Here are some uses of them:

1 Wiles’ proof of Fermat’s Last Theorem.
2 Modern cryptography. Chances are you have one

assigned to you without knowing it!
3 They have been found to contain many mysterious links

with modular forms, integer factorisation, lattices, sphere
packings, string theory,...

From a pure perspective they are the next type of Diophantine
you would want to be able to solve after linear ones and conics.
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How does one go about finding rational solutions to such
curves? In practice it is very hard! (Hence why the CNP is
tough to solve).

What about integer solutions? Again this is very hard but we
have the following remarkable theorem:

Siegel’s Theorem
Every elliptic curve has only finitely many integer solutions.

Unfortunately the proof of the above theorem is an existence
proof, it doesn’t tell us how to find the solutions.
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Idea: Reduction mod p.

Example

Let E be the elliptic curve with equation y2 = x3 + x + 1. Then
for each prime p (apart from two ”bad” primes 2 and 31) we can
reduce mod p and get elliptic curves Ep.

The points are as follows (for p = 3,5 and 7):
E3 = {(0,±1), (1,0)},
E5 = {(0,±1), (2,±1), (3,±1), (4,±2)},
E7 = {(0,±1), (2,±2)}.

Note:
Not every x gives a solution, for example on E3 there is no
point with x = 2.
If an x does give a solution then you almost always get a
pair, unless you happen to hit y = 0 (very rare).
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Naive intuition: If the solution counts Np := |Ep| tend to be
”small” then E is unlikely to have many integer points.

The curve in our previous example has:

N3 = 3 N5 = 8 N7 = 4 N11 = 13 N13 = 17 N17 = 17.

We notice that Np is increasing steadily with p. Our intuition is
incorrect!

In fact it can be shown that there are only 4 integer solutions on
E , given by {(0,±1), (72,±611)}.
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The Hasse bound

So how big do we expect Np to be for a fixed p?

Well, clearly Np ≤ p2 although as we just saw Np is usually
quite close to p. The Hasse bound tells us about the deviation
of Np from p (ignoring a few ”bad” primes).

Hasse bound
Let E be an elliptic curve. Then |Np − p| ≤ 2

√
p for each ”good”

prime. In other words Np almost always lies inbetween p − 2
√

p
and p + 2

√
p.
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Random walks...

The Hasse bound has a probabalistic interpretation!

For each x from 0 to p − 1 the value of x3 + Ax + B either is a
square mod p or it isn’t. In either case, for each x we get a
contribution of 1 + εx to Np (where εx ∈ {0,±1}).

Thus:

Np =

p−1∑
i=0

(1 + εx) = p +

p−1∑
i=0

εx

.
The Hasse bound is really telling us that the sum:

Np − p =

p−1∑
i=0

εx

behaves like a random walk. The significance of
√

p in the
bound is from the expectation of such a walk!
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Ok, so we have a lovely bound for the numbers ap = Np − p.

Refined intuition: If the shifted solution counts ap are mainly
negative (i.e. Np < p) then E is unlikely to have many integer
points.

Question: How are the ap distributed within the Hasse bound
as the prime p varies?

Problem: As p increases so does 2
√

p, giving bigger and
bigger intervals.

Answer: Normalize by studying the numbers bp =
ap

2
√

p instead.
All of these values satisfy |bp| ≤ 1 by the Hasse bound.

In fact since the bp’s lie between −1 and 1, we can associate
an angle θp to each via bp = cos(θp), where each θp ∈ [0, π].
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The Sato-Tate conjecture

The Sato-Tate conjecture tells us how these angles θp are
distributed in [0, π]. It shows that even our new intuition is
incorrect!

There are a rare class of elliptic curves that have their θp’s
uniformly distributed on [0, π]. Sato-Tate deals with the rest.

Sato-Tate
Let E be a ”typical” elliptic curve and take α, β ∈ [0, π] with
α ≤ β. Then for a randomly chosen prime p:

P(α ≤ θp ≤ β) =
2
π

∫ β

α
sin2(θ)dθ.

In other words the θp’s are uniformly distributed with respect to
the circular measure 2

πsin2(θ)dθ.
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Evidence

Returning to the elliptic curve E : y2 = x3 + x + 1, it is
extremely easy to calculate tables of θp values by hand:

Prime 3 5 7 11 13 17
Np 3 8 4 13 17 17
ap 0 -3 3 -2 -4 0
bp 0 -0.672 0.567 -0.302 -0.556 0
θp 1.571 2.308 0.968 1.878 2.160 1.571
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If we use a computer to calculate more then we get the
following pleasing histograms (the red curve is the graph of
y = 2

πsin2(θ) on [0, π]):

For the first 100 ”good” primes:
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For the first 1000 ”good” primes:
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For the first 10000 ”good” primes:

Already we can observe a quick convergence to the correct
distribution!
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Thanks for listening!
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