
Topics in Discrete Mathematics:

Introduction to Mathematical Cryptography.

Dan Fretwell

Spring semester 2021/22

1 Introduction: Classical encryption methods

Information is a valuable asset. However, it is often necessary to keep certain
pieces of information secret from others. This has been the case ever since the
dawn of time!

Cryptography is the “art of secret writing”. In modern language, the main idea
is that one can encrypt messages taken from a finite set M by applying an
encryption map, e : M ↪→ C (with C being another finite set). There are of
course many choices for e and C, but we wish to choose them so that it will be
infeasible to reconstruct a message m ∈M purely from c = e(m) ∈ C.

How would I be able to view the message? You will be clever and know enough
about the map e to be able to efficiently compute the corresponding decryp-
tion map d : Im(e) → M satisfying d ◦ e = idM . Then you can decrypt by
computing d(c) = (d ◦ e)(m) = idM (m) = m and retrieve the original message.

How do I share information with selected people without compromising security?
Good question. Most classical methods of encryption depend on sharing a key,
a piece of information that allows construction of both of the maps e and d. For
such methods the security depends heavily on keeping the shared key a secret.

Silly Example

It will soon be Eve’s birthday, and she has been strongly hinting all year that
she would like a new MacBook Pro...but it has to be the newest 2021 model
with 16-inch screen, 1TB SSD and all the other bells and whistles.

Alice is a seemingly devoted friend and has bought her one, but wants to make
sure Eve’s (only) other friend Bob hasn’t done the same. She types out a text to
Bob (Alice always writes in capitals since she is constantly in a state of extreme
emotion):

1

OMG, I SPENT LIKE THOUSANDS ON THIS MACBOOK FOR EVE. I WAS LIKE

WHAT THE HELL AND THE GUY IN THE STORE WAS LIKE YOU NEED A NEW

FRIEND. DID YOU LIKE GET ONE TOO?

However, Alice wants to make absolutely sure that Eve will not see this message,
otherwise the surprise will be spoiled! She uses classical techniques to encrypt
the message.

What would Caesar have done?

Let M = C = {A, B, C, ..., Z}. Choose 0 ≤ k ≤ 25 and use encoding map ek, the
map that shifts a letter k places in the alphabet (cycling round from Z to A if
necessary). Then k is the key and the decoding map is dk = e26−k (i.e. shift
forward by 26− k, alternatively shift backwards by k).

Taking k = 3, our example encrypts to:

RPJ, L VSHQW OLNH WKRXVDQGV RQ WKLV PDFERRN IRU HYH. L ZDV OLNH

ZKDW WKH KHOO DQG WKH JXB LQ WKH VWRUH ZDV OLNH BRX QHHG D QHZ

IULHQG. GLG BRX OLNH JHW RQH WRR?

If we relabel letters A, B, ..., Z as the numbers 0, 1, 2, ..., 25 respectively (which
we will do from now on) then M and C are both in bijection with Z/26Z and
ek becomes the map ek(m) ≡ m+ k mod 26.

This method of encryption sufficed in Caesar’s day, but it is primitive now.
An attacker can try all 26 possibilities in no time and look for the decryption
that makes sense (although for short messages there could be more than one
possibility, see Exercise Sheet 1). Never-the-less, this is considered to be one of
the first true methods of encryption, that set the path to better methods.

What would Mary Queen of Scots have done?

The Caesar shift can be generalised in many ways. We’ll see a few well known
ways here (see Exercise Sheet 1 for more). One way in particular is to realise
that the map ek defines a permutation of Z/26Z. What if we just apply an
arbitrary permutation, i.e. choose σ ∈ S26 and define eσ(m) = σ(m)?

For example the permutation σ = (0 1)(2 3)(4 5)...(24 25) produces the sub-
stitution key:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

BADCFEHGJILKNMPORQTSVUXWZY

so that our example encrypts to:

PNH, J TOFMS KJLF SGPVTBMCT PM SGJT NBDAPPL EPQ FUF. J XBT KJLF

XGBS SGF GFKK BMC SGF HVZ JM SGF TSPQF XBT KJLF ZPV MFFC B MFX

EQJFMC. CJC ZPV KJLF HFS PMF SPP?

2

Mary Queen of Scots used such a cipher to conspire to assassinate Queen
Elizabeth I in 1586 (the Babington Plot). Such ciphers are also popular in
films/games/novels. For example the Sherlock Holmes book “The Adventure of
the Dancing Men” featured the following substitution key:

Although there are many possible keys (26! ≈ 4×1026) such a cipher is still quite
weak by today’s standards. For a large enough ciphertext statistical tools such
as frequency analysis can be used to recover the message (i.e. that certain
letters in the English language appear more frequently than others). Common
words can also be guessed, for example THE, AND (and in this case LIKE).

What would Vigenere have done?

Another way to generalise the Caesar shift is to realise that we don’t have
to use the same shift throughout the message. We can instead make a string
k = (k0, ..., kn−1) of shifts and cycle through them. Mathematically, we encode
a message m = (m0,m1, ...,ml) via ek(mi) ≡ mi + ki mod n mod 26.

For example the key k = (1, 2) encrypts our message as follows:

POH, K TRFPU NJMF VIQVUBPEU PP UJJU NCDDPQL HPT FXF. K XCT NJMF

YICU VIG IGMN BPE VIG HWZ KO VIG TVPTF YBU MKLG ZQV PFGE C OGX

HSKFPE. FJF ZQV NJMF IFV PPF VPQ

Note that a generic key k is just a random list of shifts. However, we can
create keys using keywords by changing to numbers as before. For example
the keyword BRISTOL gives the key k = (1, 17, 8, 18, 19, 14, 11).

One good thing about the Vigenere cipher is that the number of keys varies
with the length of the message, since there are 26n keys of length n. However,
there still exist statistical tools that can attack these ciphers for small enough
key size and large enough message (e.g. the Kasiski exam and the Index of
Coincidence use statistics to predict the key size).

3

What would the President of the USA do?

All methods so far have had weaknesses, although we haven’t said much about
them. It’s natural to ask whether there is a provably secure encryption method.

The one time pad encrypts a message of length l using the Vigenere method,
but uses a key k of length n = l chosen uniformly at random.

Why is this provably secure? Well, if we are allowing any letter to shift to any
other letter in our message then any message can feasibly encrypt/decrypt to
any other message of the same size. For example any three letter message is
equally likely to decrypt to DOG as it is to CAT.
The first line of Alice’s message could decrypt to:

EVE, I THINK YOUR TREATMENT OF YOUR FRIENDS ISV BAD.

Historically, the President of the USA used the One Time Pad to encrypt mes-
sages. Although provably secure, there are drawbacks:

• Alice must generate a truly random key k. This is harder than it sounds!

• Alice must find a secure way to share the key with Bob. This is also
harder than it sounds (the key is huge).

• Alice must only use the key once. Using the same key twice is bad, since
if ek(mi) ≡ mi+ki mod 26 and ek(m′i) ≡ m′i+ki mod 26 then subtracting
gives ek(mi −m′i) ≡ mi −m′i mod 26. This is independent of the key!

We can demonstrate this last point by picture, working mod 2. Adding the
same random bit string to two pictures gives:

Adding the outputs gives the overlap of the two original pictures (grey cells are
only shaded to emphasise this).

There are hundreds of classical encryption methods, this is just a small sample,
e.g. you could look at what the Germans would have done (Enigma machine) or
what the Zodiac Killer would have done (Homophonic encryption). One thing
is clear...each classical method can be explained mathematically.

In other words, this is just the tip of a very large iceberg...

4

2 Diffie-Hellman: Asymmetric sharing

In the previous section we saw a couple of classical ways of encrypting data.
However, in each case the security was heavily dependent on keeping the shared
key secret, since this allowed efficient computation of both e and d. Such meth-
ods of encryption are called symmetric.

In the modern world we still use symmetric encryption methods (e.g. AES,
Twofish and Serpent) since they are very secure and relatively efficient to im-
plement. Most of the symmetric methods currently in use are sophisticated
generalisations of the historical methods, some of which we saw in the previous
section. However, we still have the issue of having to communicate the key with
intended recipients.

Question: Can Alice and Bob agree on a shared key without either one
sending it directly to the other?

Perhaps surprisingly, the answer is yes! First, we’ll have to recap some things.

Definition 2.1. A field is a commutative ring F such that every a ∈ F\{0} is
invertible, i.e. there exists b ∈ F\{0} such that ab = ba = 1.

There are many examples of fields, e.g. Q,R,C,C(x),Q(
√

2). However, the fields
that will interest us the most in this course are the finite fields, in particular
Fp = Z/pZ for any prime p.

Theorem 2.2. Let F be a field.

• The set F× = F\{0} is an abelian group under multiplication.

• If F is a finite field then F× is a cyclic group of size |F | − 1.

Proof. Left as an exercise (alternatively check Algebra 2 notes).

Definition 2.3. A primitive root for a finite field F is any g ∈ F that
generates the group F×.

Example 2.4. g = 2 is a primitive root of F5, since g2 = 4, g3 = 3 and g4 = 1
(so that g has order 4). It is not a primitive root of F7, since g3 = 1. However
g = 3 is a primitive root of F7, since g2 = 2, g3 = 6, g4 = 4, g5 = 5, g6 = 1.

It is usually easy to find a primitive root of Fp, even for large p. Quite often
g = 2, 3, 5 works. Will they work for infinitely many p? This is the subject of
a famous open conjecture.

Conjecture 2.5. (Artin’s primitive root conjecture) Let g ∈ Z not be −1 or a
perfect square. Then g is a primitive root of Fp for infinitely many p.

5

This conjecture is not known for even a single value of G, although it is known to
follow from an even bigger and more famous open conjecture, the Generalised
Riemann Hypothesis. Heuristics suggest that the density of primes such that

g = 2 is a primitive root is
∏
p prime

(
1− 1

p(p−1)

)
= 0.373955....

We are now ready to answer our question. Diffie-Hellman key exchange allows
two people to produce a shared key in F×p in a secure way. This can then be
used as a key for a symmetric encryption scheme (although we will not see how
in this course).

Diffie-Hellman key exchange

1. Alice and Bob agree on a prime p and a choice of primitive root g for F×p .

2. Alice chooses a random number 1 ≤ kA ≤ p−1 and Bob chooses a random
number 1 ≤ kB ≤ p− 1.

3. Alice sends a = gkA to Bob and Bob sends b = gkB to Alice.

4. Alice computes sA = bkA and Bob computes sB = akB and both values
are the shared key.

Notice that, although Alice and Bob have their own secret values kA and kB ,
neither needs to share their secret value with the other in order to carry out the
procedure (we call such a method asymmetric). Also, it is not necessary to
keep the values p and g secret.

Lemma 2.6. Diffie-Hellman key exchange produces a shared key.

Proof. Alice computes sA = bkA = (gkB)kA = gkBkA = gkAkB = (gkA)kB = akB ,
which is Bob’s computed value sB .

Warning - While Diffie-Hellman works for all choices of (p, g, kA, kB) there are
some bad choices (see Exercise Sheet 1).

Example 2.7. Alice and Bob agree to use p = 37 and g = 2 with secret values
kA = 7 and kB = 12 respectively.

Alice sends the value a = 17 to Bob, since:

gkA = 27 ≡ 25 × 22 ≡ (−5)× 4 ≡ 17 mod 37.

Bob sends the value b = 26 to Alice, since:

gkB = 212 ≡ (25)2 × 22 ≡ (−5)2 × 4 ≡ 26 mod 37.

Both then compute the shared value s = 26, since:

sA = bkA = 267 = −117 ≡ −103 × 11 ≡ 11× 10× 11 ≡ −11 ≡ 26 mod 37

sB = akB = 1712 = 2012 ≡ 76 ≡ 123 ≡ (−4)× 12 ≡ −48 ≡ 26 mod 37

6

The above example might seem like a lot of work to do by hand, but computers
are very quick at computing powers mod p (even for huge primes). Algorithms
exist that can compute gk in O(log k) time (i.e. the number of bits in the binary
expansion of k roughly determines the overall run time). However, the inverse
problem is very hard...

Definition 2.8. Let a ∈ F×p for a fixed prime p. A discrete log for a with

respect to primitive root g is b ∈ Z such that a = gb.

We have to resist the temptation to write b = logg(a) for now, since this is not
well defined. A given a ∈ F×p has infinitely many discrete logs (as with logs
over C).

Example 2.9. If p = 11, g = 2 and a = 6 then b = 9 is a discrete log for a,
since:

gb = 29 ≡ −16 ≡ 6 mod 11.

However, b = 19 is also a discrete log for a, since:

gb = 219 ≡ 210 × 29 ≡ 29 ≡ 6 mod 11.

In fact all numbers of the form 9 + 10m are discrete logs for a.

Theorem 2.10. Let a ∈ F×p . Then the set of discrete logs for a with respect
to g is a congruence class mod (p − 1). Further, there is a well defined group
isomorphism

logg : F×p −→ Z/(p− 1)Z.

Proof. If b is a discrete log for a with respect to g then so is b+ (p− 1)k for any
k ∈ Z, since by Fermat’s little theorem:

gb+(p−1)k = gbg(p−1)k = gb(gp−1)k = gb = a.

Now suppose that c is another discrete log for a with respect to g, not in the
same class as b mod p − 1. Without loss of generality we can assume that
1 ≤ b < c ≤ p − 1. Then a = gc = gb, implying that gc−b = 1. But this
contradicts the fact that g is a primitive root, since g then has order dividing
c− b < p− 1.

We now know that there is a well defined map:

logg(a) : F×p −→ Z/(p− 1)Z.

It is left as an exercise to prove that this is in fact a group homomorphism (i.e.
to show that logg(a1a2) = logg(a1) + logg(a2)). The fact that it is then a group
isomorphism is clear, since logg(g) = 1 + (p− 1)Z generates the RHS.

7

We already knew that F×p ∼= Z/(p − 1)Z, but a discrete log map gives one
possible way of explicitly realising this isomorphism.

Returning to the Diffie-Hellman scheme, we might ask why it is secure? Put
yourself in Eve’s shoes. She only knows p and g and can only ever see gkA and
gkB . To get the shared secret she has to construct gkAkB from this information.

The Diffie-Hellman Problem
Given a prime p, a primitive root g of F×p and values gm and gn, compute gmn.

This problem is generally thought to be hard to solve, the best known algorithms
for solving it run in exponential time (so are extremely slow). Finding a
polynomial time algorithm for this would be amazing, proving one doesn’t
exist would solve a Millennium problem (P vs NP) and earn you a million
dollars. Either leads to eternal fame!

Warning - Practically speaking, the Diffie-Hellman Problem is only considered
hard for large enough p (depending on the current level of technology) and
generic m,n. For example, if p is a two digit prime then it’s feasible to find m
and n by hand, by simply computing enough powers of g. More sophisticated
attacks exist for larger p. Typically, p should have around 2048 bits to be
considered secure by current standards (i.e. around 617 digits).

You might wonder why we can’t just compute m and n by taking discrete logs,
since logg(g

m) = m+ (p− 1)Z and logg(g
n) = n+ (p− 1)Z. This is because the

following problem is also believed to be hard to solve.

The Discrete Log Problem
Given a prime p, a primitive root g of F×p and a ∈ F×p , find logg(a).

As expected, any algorithm that solves this problem quickly will also solve the
Diffie-Hellman Problem quickly. Sadly, no such fast algorithm is known for large
p. It is widely believed that both problems are equivalently hard to solve,
but only partial results have been obtained in this direction.

Diffie-Hellman key exchange was introduced in 1976. The idea that security
could depend on the toughness of a mathematical problem was revolutionary
and would soon lead to new and exciting cryptosystems, as we will see.

In other words, the fact that Mathematics is hard can actually be a good
thing...

8

3 RSA: The birth of public key cryptography

In the previous section we saw that Alice and Bob can agree on a shared secret
key by using Diffie-Hellman key exchange. The security of this asymmetric
scheme rests entirely on the fact that the Diffie-Hellman Problem is a tough
mathematical problem.

Question: Is it possible for Alice and Bob to communicate securely without
having to use a shared key?

For a long time it was believed that the only way to communicate securely
was via symmetric schemes (and that the security depended on keeping the
shared key secret). However, in 1977, Ron Rivest, Adi Shamir and Leonard
Adleman discovered a new scheme that allowed efficient communication in an
asymmetric way. The resulting scheme, RSA, provided a huge breakthrough
in cryptography and is still one of the most widely used schemes.

Once again, the security will rely on the toughness of a mathematical problem.
First, we recall a few facts.

For N ≥ 1 we consider the commutative ring Z/NZ under addition and multi-
plication. We’re interested in the unit group (Z/NZ)×.

Lemma 3.1. For N ≥ 1 the unit group (Z/NZ)× consists of classes generated
by a that are coprime with N . Further, this group has size φ(N) with:

φ(N) = |{1 ≤ a ≤ N | gcd(a,N) = 1}| = N
∏

primes p|N

(
1− 1

p

)
.

Proof. The class of a ∈ Z is invertible mod N if and only if there exists s, t ∈ Z
such that as + Nt = 1. If gcd(a,N) 6= 1 then there is no solution whereas if
gcd(a,N) = 1 then Euclid’s algorithm can be used to construct a solution. The
first equation then follows since every class mod N has a unique representative
in the range 1 ≤ m ≤ N .

The second equation follows by Inclusion-Exclusion (see Exercise Sheet 1).

Example 3.2. For N = 14 we have (Z/14Z)× = {1, 3, 5, 9, 11, 13}, thus φ(14) =
6 = 14

(
1− 1

2

) (
1− 1

7

)
. One can check that 3−1 = 5, 9−1 = 11 and 13−1 = 13.

For N = p prime we have (Z/pZ)× = Fp\{0} = F×p , as we saw before. This

agrees with φ(p) = p
(

1− 1
p

)
= p− 1.

Similarly to Diffie-Hellman, we are going to use exponentiation maps mod N to
encode. But now we want to be able to decode too, and so we’ll need to know
when we can invert these maps.

9

Proposition 3.3. For N ≥ 1 and e ≥ 1 the map:

fe : (Z/NZ)× −→ (Z/NZ)×

m 7−→ me

is invertible if and only if e is coprime with φ(N).

Proof. If e is coprime with φ(N) then there exist d, t ∈ Z such that ed+φ(N)t =
1 (using Euclid’s algorithm). We claim that the map fd is the inverse of fe.

Note that since fd ◦ fe = fe ◦ fd we only have to check that one of these is the
identity map. The claim then follows since:

(fd ◦ fe)(m) = fd(m
e) = med = m1−φ(N)t = m(mφ(N))−t = m,

since mφ(N) = 1 for any m ∈ (Z/NZ)×, by Lagrange’s theorem (or by Euler’s
generalisation of Fermat’s little theorem).

For each prime p dividing φ(N) there exists an element a ∈ (Z/NZ)× of order
p (by Cauchy’s theorem). If there exists such a prime that also divides e then
fe(a) = ae = (ap)

p
e = 1. However, fe(1) = 1 too and so fe is not invertible.

Note that the maps we are looking at here are slightly different to the ones
we used in Diffie-Hellman. There we fixed the base g and applied an arbitrary
power. Here we are fixing the power and applying it to an arbitrary base.

Let’s now think a little about how we might use these maps to encrypt securely.

Bad idea

Alice chooses N = p and wishes to send a message m ∈ (Z/pZ)× to Bob. She
chooses a random 1 ≤ e ≤ p− 1 and sends c = fe(m) to Bob. He can’t retrieve
the message since he doesn’t know p or e, so he asks for those too. Alice sends
them on, Bob computes d = e−1 mod p− 1 and hence computes fd(c) = m.

While Bob can compute everything necessary in polynomial time (using Euclid’s
algorithm), there is no security in this method at all! The problem is that Alice
has also given Eve everything she needs to do the exact same computation Bob
did.

We need to somehow ensure that Bob has enough information to invert e quickly,
but that Eve can’t do it feasibly given what she knows. The clever idea of RSA
is to instead let Bob choose N , rather than Alice, to guarantee this.

How should Bob choose N? We can’t use N = p because of the issue above,
everyone would be able to see it. However, a product of two primes works very
well!

10

Good idea - The RSA scheme

1. Bob chooses two secret primes p, q. He computes the semiprime N = pq
and chooses e coprime with φ(N) = (p−1)(q−1). These are sent to Alice.

2. She encrypts a messagem ∈ (Z/NZ)× by computing c = fe(m) (she knows
e and N). This is sent to Bob, who can compute d = e−1 mod (p−1)(q−1)
and hence compute fd(c) = m.

As with any scheme there are bad choices of parameters (see Exercise Sheet 1).

Example 3.4. Bob chooses p = 7 and q = 13, so that N = 91 and φ(N) =
6× 12 = 72. He chooses e = 5 and releases the values (e,N) to Alice.

Alice wishes to send the message m = 11 to Bob. She sends the encrypted
message:

c = fe(m) = 115 ≡ (112)2 × 11 ≡ 302 × 11 ≡ −110 ≡ 72 mod 91.

Bob receives c = 72 and computes

d = 5−1 ≡ 29 mod 72.

He then decrypts to get the original message:

m = fd(c) = 7229 ≡ −1929 ≡ −(−3)14 × 19 ≡ −314 × 19 ≡ −(−10)3 × 9× 19

≡ 1000× 9× 19 ≡ −9× 19 ≡ −171 ≡ 11 mod 91.

Why is the RSA scheme secure? Eve only knows N, e and c and has to get back
to the message m.

The RSA Problem
Given N = pq (for two secret primes p, q), e coprime to φ(N) and c ≡ me mod N
for some m ∈ (Z/NZ)×, compute m (i.e. invert the map fe).

As with the Diffie-Hellman Problem, this problem is also thought to be hard to
solve. So why can Bob solve it easily? He knows the values of the primes p, q
and so is able to form the number φ(N) = (p− 1)(q− 1). Knowing this, he can
find the necessary inverse d = e−1 mod (p− 1)(q − 1) and hence solve the RSA
problem in polynomial time!

For Eve to replicate what Bob was able to do she would need to be able to
compute the number φ(N) = (p − 1)(q − 1). The only known way to do this
from the information she knows is to find p and q.

The Semiprime Factoring Problem
Given a semiprime N = pq, find the primes p and q (i.e. factor N).

It is now clear that if one can solve this problem efficiently (i.e. in polynomial
time) then the RSA Problem would be easy to solve too. But how well can

11

we factor an arbitrary integer N? There’s of course the ancient method of
trial division, simply try to divide by every prime up to

√
N , but this is not

an efficient algorithm for large N (it runs in exponential time). Throughout
history we have developed many better algorithms for factoring, but the best
ones we have (e.g. the Number Field Sieve) run in sub-exponential time and
so are still too slow to attack RSA.

Warning - Practically speaking, the Semiprime Factoring Problem is only con-
sidered hard for large enough primes p and q (would you really have trouble
factoring 15 or 91?). Typically, the public modulus N should have around 2048
bits to be considered secure by current standards (i.e. around 617 digits), al-
though 1024 bits is also considered fine since the world record for semiprime
factoring is 829 bits, (i.e. around 250 digits).

The RSA scheme was the first example of public key cryptography. In
such a scheme everyone has two keys, public and private. Anyone can easily
encrypt and communicate with someone using their public key, but only they
can see their private key. For example, in RSA a public key is a pair (e,N) and
the corresponding private key is the value d = e−1 mod (p− 1)(q − 1).

Recall that for most classical systems the security depended on keeping the
shared key secret. The security of a public key scheme depends on the fact that
decryption without the private key is infeasible, but with the private key it is
fast. Everyone theoretically knows the information needed to decrypt messages,
but practically Mathematics makes it hard to get at!

Many public key schemes are constructed so that Eve has to solve a hard math-
ematical problem in order to decrypt, but Bob can turn it into an easy mathe-
matical problem using his private key.

In other words, Mathematics is hard but Bob finds it easy...

12

4 ElGamal: A scheme for any finite group

When RSA was first released back in 1977 it was a revelation that Mathematics
can be used to provide security. We can force the attacker, Eve, to have to solve
a hard problem (e.g. the RSA Problem) to get at our secrets...whereas we can
sit back and relax, since we have a built a secret “trapdoor” into the problem
that makes it easy (e.g. we know the factors of N).

When we looked at the Diffie-Hellman key exchange, we saw that the security
was based on the difficulty of the Diffie-Hellman problem, which is roughly
related to the Discrete Log Problem.

Question: Is there a public key system whose security is based on the Discrete
Log Problem?

The answer is yes, and in fact we’ll be able to create one for any finite cyclic
group!

First we need to know what discrete logs are in this setting. Let’s go back to the
case of F×p . A discrete log of a ∈ F×p only made sense once we fixed a primitive

root g, and then it was defined to be any b ∈ Z such that a = gb. For arbitrary
cyclic groups things are pretty much identical.

Definition 4.1. Let G be a finite cyclic group. A discrete log of h ∈ G with
respect to generator g is k ∈ Z such that h = gk.

Warning - Be careful, when we write gk this means to apply the group op-
eration k times to g. It doesn’t necessarily mean that g is being multiplied by
itself (e.g. the group operation might be addition).

Recall that in order to get a unique discrete log, we had to restrict to a class
in Z/(p − 1)Z (see Theorem 2.10). Something very similar happens for cyclic
groups.

Theorem 4.2. Let G be a finite cyclic group and h ∈ G. Then the set of
discrete logs for h ∈ G with respect to generator g is a congruence class mod
|G|. Further, there is a well defined group isomorphism

logg : G −→ Z/|G|Z.

Proof. If k is a discrete log for h with respect to g then so is k + |G|m for any
m ∈ Z, since by Lagrange’s theorem:

gk+|G|m = gkg|G|m = gk(g|G|)m = gk = h.

Now suppose that k′ is another discrete log for h with respect to g, but that k′

is not in the same class as k mod |G|. Without loss of generality we can assume
that 1 ≤ k < k′ ≤ |G| − 1. Then h = gk = gk

′
, implying that gk

′−k = id.
But this contradicts the fact that g is a primitive root, since then g has order
dividing k′ − k < |G|.

13

It is now clear that there is a well defined map:

logg : G −→ Z/|G|Z.

It is left as an exercise to prove that this is in fact a group homomorphism
(i.e. that logg(h1h2) = logg(h1) + logg(h2)). The fact that it is then a group
isomorphism is clear, since logg(g) = 1 + |G|Z generates the RHS.

Example 4.3. Let G = F×p . Then the discrete log of a ∈ G with respect to
generator g is the same thing as the discrete log of a with respect to primitive
root g. For example, if p = 11 and g = 2 then log2(6) = 9 + 10Z since 29 ≡
2−1 ≡ 6 mod 11.

Let G = Z/10Z under addition. Then log7(3) = 9 + 10Z since 7 × 9 = 63 ≡
3 mod 10.

Let G = µ10, the group of 10th roots of unity under multiplication. The discrete
log of h = e

3πi
10 with respect to ζ = e

7πi
10 is logζ(h) = 9 + 10Z since ζ9 = e

63πi
10 =

e
3πi
10 = h.

You might not have realised this but all three of the above calculations were
for the “same” group (cyclic of size 10), but the calculations feel completely
different (at least the first one should feel very different to the other two). This
shows that even though two cyclic groups may be isomorphic, discrete log
calculations can be completely different.

This all might seem weird (at least to an algebraist)...we usually only care about
groups up to isomorphism. However, in this case it really does matter how the
group is presented to you and what the group operation is. More on this
later...

We are now able to see how discrete logs can be used in public key cryptography.

The ElGamal scheme

1. Bob chooses a finite cyclic group G of size q and fixes a generator g. He
chooses a secret value 1 ≤ k ≤ |G| and computes h = gk. Bob’s public
key is (G, q, g, h) and his private key is k.

2. Alice encrypts a message m ∈ G by choosing a secret value 1 ≤ s ≤ |G|
and computing c1 = gs and c2 = mhs (she knows this information). She
sends c = (c1, c2) to Bob.

3. Bob decrypts by computing m = c2c
−k
1 .

Before seeing an example we first must prove that Bob does indeed decrypt to
the correct message m.

14

Lemma 4.4. ElGamal decryption works.

Proof. This is a simple calculation:

c2c
−k
1 = (mhs)(gs)−k = (mgsk)(g−sk) = m(gskg−sk) = m.

Example 4.5. Let’s work with the multiplicative group G = F×31. Bob chooses
generator g = 3 and private key k = 11. Then Bob’s public key is (F×31, 31, 3, 13),
since:

h = 311 ≡ (−4)4 × 3−1 ≡ 2× 4× 21 ≡ −80 ≡ 13 mod 31.

Alice wishes to send the message m = 7. She chooses secret value s = 4 and
computes that

c1 = 34 ≡ 19 mod 31

c2 = 7× 134 ≡ 7× 142 ≡ 70 ≡ 8 mod 31.

Then she sends (19, 8) to Bob.

Bob decrypts by computing

m = 8× 19−11 ≡ 8× 1919 ≡ 8× 19× 209 ≡ 8× 19× 49 × 59

≡ 8× 19× 23 ≡ 2× 19 ≡ 7 mod 31.

A few remarks:

• Given an arbitrary finite group G we can easily construct cyclic sub-
groups by picking a random g ∈ G and taking H = 〈g〉. In practice, this
is usually a good source of cyclic groups for use in ElGamal .

• We viewed messages as elements of m ∈ G, but we didn’t explain why we
were able to do this. There are good methods of translating conventional
messages into group elements, but we won’t discuss these in this course.

• You might wonder why we include q in the public key. This is mainly
since the size of G might not be obvious from the way that G is presented
to us.

We can now discuss the security of the ElGamal scheme. Note that Eve knows
G, q, g, h, c1 and c2, and so to get the message m she needs to use this to compute
c2c
−k
1 . However, Eve does not know the value of k and so the only clear way

for her to get this is to calculate logg(h) = k + qZ. But this is an instance of
the Discrete Log Problem for G.

The Discrete Log Problem (for cyclic groups):
Given a cyclic group G, a generator g and a ∈ G, find logg(a).

15

So the security of ElGamal depends entirely on how hard it is to solve the
Discrete Log Problem for the chosen group G. As we saw earlier, groups that
are abstractly the same, i.e. isomorphic, can have Discrete Log Problems of
varying difficulty.

Example 4.6. Let G = Z/NZ (under addition) and choose g coprime with N .
Then g generates G. Solving the Discrete Log Problem for this setup means
being able to solve the congruence gx ≡ a mod N (since the group is additive).
This congruence is easily solvable by multiplying both sides by g−1 mod N (com-
putable in polynomial time by Euclid’s algorithm).

For example, suppose N = 13 and g = 7. Then log7(9) = 5 + 13Z since
7x ≡ 9 mod 13 has solution x ≡ 9 × 7−1 ≡ 18 ≡ 5 mod 13. Surely enough
7 + 7 + 7 + 7 + 7 = 7× 5 = 35 ≡ 9 mod 13.

Given the above example it should be clear that you should never use G =
Z/NZ with the ElGamal scheme. The Discrete Log Problem is extremely simple
to solve. In stark contrast, we saw that the Discrete Log Problem for F×p is
believed to be difficult, and so these groups are good choices for G.

In part two of this course you will see another family of good choices for G,
coming from points on elliptic curves over finite fields. Much less is known
about the Discrete Log Problem for these groups, due to the geometric na-
ture of their group operation. Elliptic curves are a current favourite choice of
group structure in cryptography, in particular they are currently used in a lot
of cryptocurrency protocols (e.g. Bitcoin).

In other words, Mathematics is only hard if Bob makes good choices for G...

16

5 Digital Signatures: Proving that you are you

We’ve seen that public key cryptography provides a great way for people to
communicate in an asymmetric way. But it can do way more than this.

One problem with symmetric schemes is that finding the shared key immediately
allows Eve to read all messages. Another problem is that knowing the shared
key also lets Eve pretend to be Alice or Bob, without immediate detection!

Most public key schemes often allow the sender to add a digital signature,
providing authentication that the message was indeed sent by that person.
How might this be possible?

Bad idea

Alice thinks for a while and realises that she could probably convince Bob that
she is the true sender of a message m by providing something that only she
could feasibly know, i.e. her private key.

There are two obvious problems here. Firstly, Bob doesn’t know Alice’s private
key, and so there is no way to verify that this really is Alice’s secret information.
Secondly, noone except Alice should ever be given access to Alice’s private key!
(Otherwise all of her messages can be read).

Good idea

Alice realises that she somehow has to signal to Bob that the sender knows
Alice’s private key, without telling him or anyone else what it is.

She decides to do something clever. She chooses a second message m0 and
decrypts it using her private key (something that only Alice can feasibly do)
to give m1. She then sends Bob the original message m with the signature
(m0,m1) (after encrypting using Bob’s public key).

When Bob receives everything he can verify the signature by encrypting m1

using Alice’s public key (which everyone knows) and checking that the output
does indeed match m0. He concludes that the sender is probably Alice, since
noone else can feasibly decrypt a message using only Alice’s public key.

Let’s look at two examples of digital signature schemes, based on the RSA and
ElGamal schemes.

17

The RSA signature scheme

1. Alice chooses an RSA public/private key:

• (e,N) consisting of a semiprime N and 1 ≤ e ≤ N coprime with N ,

• the secret value d = e−1 mod (p− 1)(q − 1) (private key).

2. In order to sign a message she first chooses an auxiliary message m0 ∈
(Z/NZ)× and decrypts using her private key to give m1 = fd(m0). When
sending an encrypted message to Bob (using his public key), she signs it
with the pair (m0,m1).

3. Bob decrypts the encrypted message (using his private key) and verifies
the signature by checking that fe(m1) = m0.

Example 5.1. Alice chooses RSA public key (eA, NA) = (13, 143). Her private
key is dA = 37, since φ(NA) = 120 and eAdA = 481 ≡ 1 mod 120.

Bob chooses RSA public key (eB , NB) = (23, 55). His private key is dB = 7,
since φ(NB) = 40 and eBdB = 161 ≡ 1 mod 40.

To encrypt the message m = 2 Alice uses Bob’s public key:

c = feB (m) = 223 ≡ 94 × 2−1 ≡ 262 × 28 ≡ 132 × 112 ≡ 4× 2 ≡ 8 mod 55

To sign, she chooses auxiliary message m0 = 17 and decrypts using her private
key to give:

m1 = fdA(m0) = 1737 ≡ 318 × 17 ≡ 143 × 17 ≡ 73 × (−7)

≡ −57× 7 ≡ −399 ≡ 30 mod 143

Alice sends Bob the triple (c,m0,m1) = (8, 17, 30).

Bob decrypts c = 8 using his private key to get the original message:

m = fdB (c) = 87 ≡ 93 × 8 ≡ 81× 72 ≡ 26× 17 ≡ 442 ≡ 2 mod 55.

He then computes, using Alice’s public key:

meA
1 = 3013 ≡ 313 × 1013 ≡ 313 × 10 ≡ 142 × 3× 10

≡ 53× 3× 10 ≡ 160 ≡ 17 mod 143.

The signature is then verified since meA
1 = m0 = 17.

In practice, Alice can use the actual message m in order to sign. She clearly
cannot take m0 = m (otherwise everyone would see the message!) but can
instead apply a hash function H to m and take m0 = H(m). Hash functions
are functions that produce a short, fixed length string from variable length
messages in such a way that is hard to invert, or forge.

18

While the RSA signature scheme is secure (if the parameters are chosen well),
it might worry some people that they are always using their private key to sign
the message. Over time Eve will gain information about this. For this reason
Alice might use a second set of keys specifically designed for signing.

We can also make signature schemes that complement the ElGamal scheme,
although these are a little more complicated than RSA signatures. The ones we
will see only work for the cyclic groups G = F×p .

The ElGamal signature scheme

1. Alice chooses an ElGamal public/private key, i.e. a tuple (F×p , g, h) with

p prime, g a primitive root mod p and h = gk for some secret value
1 ≤ k ≤ p− 1 (Alice’s private key).

2. In order to sign a message she chooses an auxiliary message m0 ∈ F×p and
a secret value 1 ≤ s ≤ p − 1 coprime to p − 1. She lets m1 = gs and
m2 ≡ (m0 − km1)s−1 mod p− 1. When sending an encrypted message to
Bob (using his public key), she signs it with the triple (m0,m1,m2).

3. Bob decrypts the encrypted message (using his private key) and verifies
the signature by checking that hm1mm2

1 = gm0 .

Proposition 5.2. The verification step is theoretically correct.

Proof. This is because:

hm1mm2
1 = (gk)m1(gs)m2 = gkm1+sm2 = gkm1+s(m0−km1)s

−1

= gm0 .

Let’s see an example.

Example 5.3. Alice chooses ElGamal public key (F×pA , gA, hA) = (F×23, 5, 22)
(her private key is kA = 11).

Bob chooses ElGamal public key (F×pB , gB , hB) = (F×17, 3, 11) (his private key is
kB = 7).

To encrypt the message m = 13 Alice uses Bob’s public key with secret value
s1 = 3:

c1 = gs1B = 33 ≡ 10 mod 17

c2 = mhs1B = 13× 113 ≡ 4× 63 ≡ 24× 2 ≡ 14 mod 17

To sign she chooses auxiliary message m0 = 19, secret value s2 = 9 and com-

19

putes:

m1 = gs2A = 59 ≡ 24 × 5 ≡ 80 ≡ 11 mod 23

m2 ≡ (m0 − kAm1)s−12 ≡ (19− 11× 11)× 9−1 ≡ (−102)× 5

≡ −14× 5 ≡ 40 ≡ 18 mod 22

Alice sends Bob the quintuple (c1, c2,m0,m1,m2) = (10, 14, 19, 11, 18).

Bob decrypts (c1, c2) = (10, 14) using his private key to get the original message:

c2c
−kB
1 = 14× 10−7 ≡ (−3)× 127 ≡ 3× 57 ≡ (−2)× 56 ≡ −2× 83

≡ −16× 64 ≡ 13 mod 17.

He then computes, using Alice’s public key:

hm1

A mm2
1 = 2211 × 1118 ≡ −1118 ≡ −69 ≡ −134 × 6 ≡ −82 × 6

≡ −64× 6 ≡ 7 mod 23

gm0

A = 519 ≡ 29 × 5 ≡ 9× 16× 5 ≡ −16 ≡ 7 mod 23

The two values match and so the signature is verified.

Why is this signature scheme secure? Eve only knows p and h = gk, and in
order to forge a signature she needs to be able to find a, b, c ∈ Z such that
hbbc = ga. She can then sign a message fraudulently by sending Bob the
triple (m0,m1,m2) = (a, b, c).

We must justify that it is hard to solve this equation. Taking logs with respect
to g gives:

b logg(h) + c logg(b) ≡ a mod p− 1.

The only known way to solve this equation is for Eve to pick values of a and b,
compute logg(h) and logg(b), and then solve for c. Even if b is chosen well, Eve
would still need to calculate logg(h), which is a generic instance of the Discrete
Log Problem (if Alice chose her keys well). Thus only Alice should feasibly be
able to sign the messages that she sends.

There are of course many other signature schemes, some based on other public
key schemes. In the second part of this course you will see how elliptic curves
provide secure signature schemes.

In other words, mathematics can sign your name in many different ways....

20

6 Knapsack schemes: A postquantum precursor

So far, we have seen many public key schemes that rely on the toughness of
mathematical problems to guarantee security. For example, the RSA scheme
relies on the toughness of the Semiprime Factoring Problem and the ElGamal
scheme relies on the toughness of the Discrete Log Problem for certain (presen-
tations of) cyclic groups.

However, the world might currently be on the brink of a major advance in
technology. Quantum computers rely on the nature of quantum mechanics
to compute. In particular their base unit is not a bit (a 0 or a 1) but a qubit
(a superposition α|0〉+ β|1〉 for (α, β) ∈ C2).

The fact that a qubit has more freedom is partly what makes quantum comput-
ers much more powerful than conventional computers. Another strong feature
is that qubits can be entangled using the tensor product, and so a quantum
computer can potentially store information on all 2n states of a system using
only n qubits.

Due to the above, quantum computers are very good at performing Fourier
transforms and so can detect periodicity and solve such problems very quickly.
In particular, Shor’s algorithm can solve both the Semiprime Factoring Prob-
lem and the Discrete Log Problem in polynomial time on a quantum computer.
When quantum computers become good enough, schemes like RSA and ElGa-
mal will become insecure.

There is currently a global fight for quantum supremacy! Thus, there is a
scramble for quantum secure algorithms, ones that rely on problems that a
quantum computer is not known to be able to solve easily. Certain lattice
problems are thought to be such problems, but more on that later.

Consider the following problem. Let S be a set of positive integers. If I choose
a subset S′ ⊆ S then I can compute the sum of the elements of S′. This is of
course easy and fast to do, but suppose I instead gave you only the sum and
asked you what S′ is. This turns out to be a tough problem.

The Knapsack Problem
Given an increasing sequence of positive integers a1 < a2 < ... < an and a sum
of distinct elements s =

∑
1≤t≤k ait for some 1 ≤ ik < ik−1 < ... < i1 ≤ n,

determine the set S = {ai1 , ai2 , ..., aik}.

This is a very difficult problem to solve, even though it sounds easy. The basic
reason for this is that if |S| = n is a generic set of positive integers then there
are 2n possible sums of distinct elements. This is huge and infeasible to search
through for large n.

Ok, so we’ve found a hard problem that could be used in cryptography. But
remember, we need to find an easy version of the problem for Bob to solve.

21

Thankfully there are choices of sequence that are easy to solve.

Definition 6.1. A sequence a1 < a2 < ... < an of positive integers is superin-
creasing if am+1 >

∑
1≤t≤m at for any 1 ≤ m ≤ n− 1.

Example 6.2. The sequence an = 2n−1 is superincreasing since for any 1 ≤
m ≤ n: ∑

1≤t≤m

at =
∑

1≤t≤m

2t−1 = 2m − 1 < 2m = am+1.

Similarly, the sequence an = bn−1 is superincreasing for any b ≥ 2.

The sequence 1, 4, 6, 20, 34, 70 is superincreasing, but the sequence 1, 4, 6, 20, 30, 70
is not (since 1 + 4 + 6 + 20 = 31 > 30).

Theorem 6.3. For superincreasing sequences, there is an algorithm that solves
the Knapsack Problem in polynomial time.

Proof. We use a greedy algorithm. Choose the biggest term ai1 in the sequence
that is less than or equal to s. We then choose the biggest term ai2 in the
sequence that is less than or equal to s − ai1 . Do the same for s − ai1 − ai2 .
Keep going until reaching a term less than every element of the sequence. Then
we claim that s = ai1 + ai2 + ...+ aih solves the Knapsack Problem.

Suppose that the true solution is s = aj1+aj2+...+ajk with jk < jh−1 < ... < j1.
We prove that ai1 = aj1 . It then follows that ai2 = aj2 , by considering the same
Knapsack problem but with s− aj1 . Continuing recursively it then follows that
ait = ajt for all 1 ≤ t ≤ k (which forces h = k too). Thus, the true solution
would match the output of the algorithm.

We split into two cases:

• If ai1 < aj1 then the algorithm underestimates s, since:

s ≥ aj1 > aj1−1 + ...+ a1 ≥ ai1 + ...+ a1 ≥ ai1 + ai2 + ...+ aih .

• If ai1 > aj1 then the algorithm overestimates s, since

s ≤ aj1 + ...+ a1 < aj1+1 ≤ ai1 ≤ ai1 + ...+ a1.

Thus ai1 = aj1 as expected.

Example 6.4. You already know an example of this algorithm. We showed
above that an = 2n−1 is a superincreasing sequence, and the Knapsack Prob-
lem for this sequence is equivalent to writing numbers in binary. The above
algorithm is the usual way that you do this.

For example, take sequence 1, 2, 4, 8, 16, 32 and s = 22. The biggest element
that is less than or equal to s is 16. The biggest element less than or equal to
s − 16 = 6 is 4. The biggest element less than or equal to s − 16 − 4 = 2 is 2.
Thus s = 2 + 4 + 16 solves this Knapsack Problem (i.e. the number 23 in binary
is 10110).

22

Example 6.5. For a random example, take sequence 3, 5, 9, 20, 41 and s = 53.
This sequence is superincreasing. The biggest element less than or equal to s
is 41. The biggest element less than or equal to s − 41 = 12 is 9. The biggest
element less than or equal to s− 41− 9 = 3 is 3. Thus s = 3 + 9 + 41 solves this
Knapsack Problem.

The above algorithm can fail for a non-superincreasing sequence, e.g. for se-
quence 2, 3, 4 and s = 5 the biggest element less than or equal to s is 4, but
then s− 4 = 1 is smaller than everything in S.

We are almost ready to see the Knapsack scheme. We just have to figure out
how Bob can turn the easy version of the Knapsack problem into a hard version.
He can start with a superincreasing sequence, choose a modulus M , a positive
integer w coprime with M , and compute the new sequence wa1 < wa2 < ... <
wan. Reducing this sequence mod M produces a random looking sequence
that is not superincreasing (it probably isn’t even increasing).

The Knapsack scheme

1. Bob chooses a superincreasing sequence a1 < a2 < ... < an, a modulus
M >

∑
1≤t≤n at and a number w coprime with M . His public key is the

sequence b1, b2, ..., bn, formed by reducing the sequence wa1 < wa2 < ... <
wan mod M . His private key is the pair (M,w).

2. To send a message m to Bob, Alice converts it to an n long bit string
x = (x1, x2, ..., xn), in her favourite way, and sends c =

∑
1≤t≤n xtbt.

3. Bob decrypts by computing c′ ≡ w−1c mod M and solving the Knapsack
Problem for the superincreasing sequence a1 < a2 < ... < an and s = c′.

Lemma 6.6. The decryption algorithm works.

Proof. Bob receives c =
∑

1≤t≤n xtbt and the claim is that x also solves the
Knapsack Problem for the sequence a1 < a2 < ... < an and s = c′. This is clear
since:

c′ ≡ w−1c ≡ w−1
∑

1≤t≤n

xtbt ≡
∑

1≤t≤n

xt(w
−1bt) ≡

∑
1≤t≤n

xtat mod M.

By the condition M >
∑

1≤t≤n at we have equality c′ =
∑

1≤t≤n xtat, proving
our claim.

Example 6.7. Bob chooses the superincreasing sequence 1, 2, 4, 8, 16, 32. Using
modulus M = 65 and w = 11 this becomes the sequence 11, 22, 44, 23, 46, 27.

Alice wishes to send the bit string 100110 to Bob. She sends c = 11+23+46 = 80
to Bob.

Bob computes w−1 ≡ 6 mod M and computes c′ ≡ 6∗80 ≡ 25 mod 65. Solving
the Knapsack Problem for the superincreasing sequence and s = 25 gives 100110
as expected.

23

We say a little more about the security of this scheme.

Definition 6.8. Let v1,v2, ...,vn be a basis for Rn. The lattice generated by
this basis is the set L = {α1v1 + α2v2 + ...+ αnvn |αi ∈ Z}.

Given a generic Knapsack Problem, for a sequence b1, b2, ..., bn and a target
s =

∑
1≤t≤n xtbt, we can form the lattice L ⊂ Rn+1 generated by the rows

r1, r2, ..., rn+1 of the matrix:
2 0 0 . . . b1
0 2 0 . . . b2
0 0 2 . . . b3
...

...
...

. . .
...

1 1 1 1 s

 .

Since s =
∑

1≤t≤n xtbt we note that the vector v = (
∑

1≤t≤n xtrt) − rn+1 =
(2x1 − 1, 2x2 − 1, ..., 2xn − 1, 0) ∈ L. Notice that since each xi ∈ {0, 1} this
vector has Euclidean length ||v|| =

√
n. For reasons beyond this course, this is

likely to be the shortest non-zero vector in L.

The Shortest Vector Problem
Given a lattice L, determine a vector v ∈ L\{0} that minimises ||v||.

This problem is considered a very difficult problem to solve in large enough
dimensions, even with a quantum computer. However, there exist lattice re-
duction algorithms that can approximately solve such problems for lattices of
low enough rank.

Sadly, in order to use the knapsack scheme with a reasonable key size we would
like L to have rank n+ 1 < 300, but for these values of n lattice reduction algo-
rithms are likely to produce the shortest vector v that solves the corresponding
Knapsack Problem.

While knapsack schemes are known to be insecure for key sizes we might care
about, they at least hint that lattice problems might be of use in cryptography.
Indeed, this is the case and there are a great deal of lattice based schemes that
have been proposed over the last few decades. The current favourite is the
NTRU scheme, which uses the toughness of the Shortest Vector Problem
and the Closest Vector Problem for lattices.

In other words, postquantum cryptography is on the rise...

24

7 Secret Sharing: The digital way

Often it is the case that someone wishes to share access to a secret with a group
of people. Not only that but the secret might be valuable and so they might
wish for it to be hard to access without enough people being present.

For example, Alice is head of a bank that has a huge vault full of money. She
might want employees to have access to the vault, but for noone to have access
by themselves. In order to guarantee this she could write down the combination
and divide it into pieces, strategically distributing pieces among employees.
This isn’t great though, everyone sees a piece of the combination and so learns
something.

Instead she could employee a unique key and have special locks installed that
can only be unlocked using two different keys, say. This is much better, although
the number of keys could get unwieldy.

Can we design such a system for sharing secrets digitally? Once again the
answer is yes, and Mathematics comes to the rescue!

To be more precise we would like a way to take a digital secret S and to associate
with it n pieces of information S1, S2, ..., Sn so that:

• Any t of the Si can be used to access/construct S.

• No t− 1 of them is enough to access/construct S.

Such a scheme is called a secret sharing scheme of size n and threshold t.
We might also like it to be the case that knowing only t− 1 of the Si tells you
nothing about S. Such schemes are called perfect.

Example 7.1. There’s an obvious way of creating perfect secret sharing schemes
of size n and threshold t = n. Let M ≥ 1 and suppose we wish to share se-
cret value S ∈ Z/MZ. We choose n − 1 random values S1, S2, ..., Sn−1 and let
Sn ≡ S − (S1 + ...+ Sn−1) mod m.

The secret S can be reconstructed using all n of the Si since their sum is
S mod M . Knowing n− 1 of the values doesn’t tell us anything about S, since
the remaining value can take multiple values, giving multiple values for S.

This scheme is perfect since the the remaining value is equally likely to be any
element of Z/MZ, and running through all such choices gives all possible values
of S (so we haven’t learned anything about S).

The main issue with having threshold t = n is that everyone has to be present
in order to reconstruct the secret. This seems like overkill and so we might seek
schemes with threshold t < n. We’ll see an example of this soon.

25

Lemma 7.2. Let K be a field and x1, x2, ..., xt ∈ K. Then:

det


1 x1 x21 . . . xt−11

1 x2 x22 . . . xt−12

1 x3 x23 . . . xt−13
...

...
...

. . .
...

1 xt, x2t . . . xt−1t

 =
∏

1≤i<j≤t

(xj − xi).

Proof. Recall Leibniz’s formula for determinants:

det(ai,j) =
∑
σ∈St

sgn(σ)

t∏
i=1

ai,σ(i).

Treating the xi as variables it is now clear that the determinant of our matrix

is a polynomial d ∈ K[x1, x2, ..., xt] of degree t(t−1)
2 .

Note that setting xi = xj for any i 6= j gives determinant 0, since two rows of
the matrix would be equal. Thus (xj − xi) divides d for each i 6= j and so:

d = d′
∏

1≤i<j≤t

(xj − xi),

for some polynomial d′ ∈ K[x1, x2, ..., xt]. However, the product also has degree
t(t−1)

2 and so d′ must be constant. Further, d′ = 1 since the diagonal term

of the determinant is x2x
2
3 ... x

t−1
t and this term appears in the product with

coefficient 1 (take the product of the left hand entries of the brackets).

A matrix of the above form is called a Vandermonde matrix. The fact
that the determinant of such a matrix takes a nice form allows us to prove the
following.

Proposition 7.3. Let K be a field and P1, ..., Pt ∈ K2 be points with distinct
x-coordinates. Then there is a unique polynomial f ∈ K[x] of degree t− 1 such
that f(xi) = yi (with Pi = (xi, yi)).

Proof. Let f = a0 + a1x+ a2x
2 + ...+ at−1x

t−1. In order to satisfy f(xi) = yi
we must solve the equations:

a0 + a1x1 + a2x
2
1 + ...+ at−1x

t−1
1 = y1

a0 + a1x2 + a2x
2
2 + ...+ at−1x

t−1
2 = y2

...
...

...

a0 + a1xt + a2x
2
t + ...+ at−1x

t−1
t = yt

This linear system can be written as Az = y with A a Vandermonde matrix, z =
(a0, a1, ..., at−1)T and y = (y1, y2, ..., yt)

T . This system has a unique solution,
since det(A) =

∏
1≤i<j≤t(xj − xi) 6= 0 (since the xi are distinct).

26

The above proposition is a generalisation of the fact that two points in the
plane describe a unique line, three points determine a unique parabola, etc.
Note that the above proof actually gives a method for finding the polynomial
f , we solve a linear system of equations.

Example 7.4. If t = 2 this system of equations becomes:(
1 x1
1 x2

)(
a0
a1

)
=

(
y1
y2

)
.

Solving gives:(
a0
a1

)
=

1

x2 − x1

(
x2 −x1
−1 1

)(
y1
y2

)
=

1

x2 − x1

(
x2y1 − x1y2
y2 − y1

)
,

so that the line through points (x1, y1), (x2, y2) (with x1 6= x2) has equation:

y =
x2y1 − x1y2
x2 − x1

+
y2 − y1
x2 − x1

x.

This agrees with what you already know (e.g. the x coefficient is the gradient).

Lagrange came up with a much quicker way of constructing the polynomial
passing through t points.

Theorem 7.5. (Lagrange Interpolation) The Let K be a field and P1, ..., Pt ∈
K2 be points with distinct x-coordinates. The unique polynomial f ∈ K[x] of
degree t− 1 in Proposition 7.3 is given by:

f(x) =

t∑
i=1

yi
∏
j 6=i

x− xj
xi − xj

.

Proof. Proposition 7.3 proved uniqueness and so we only need to show that
f(xi) = yi. This is clear since:

f(xi) = yi
∏
j 6=i

xi − xj
xi − xj

+
∑
a6=i

ya
∏
j 6=a

xi − xj
xa − xj

= yi.

(The first product term is 1 by cancellation, and each of the second product
terms is 0, since if a 6= i then the numerator contains a term with j = i, i.e.
(xi − xj) = 0).

Example 7.6. The line going through (x1, y1), (x2, y2) ∈ K2 (with x1 6= x2) is:

y = y1
x− x2
x1 − x2

+ y2
x− x1
x2 − x1

=
x2y1 − x1y2
x2 − x1

+
y2 − y1
x2 − x1

x.

The parabola going through (1, 4), (2, 6) and (−1, 10) in R2 is:

y = 4
(x− 2)(x+ 1)

(1− 2)(1 + 1)
+ 6

(x− 1)(x+ 1)

(2− 1)(2 + 1)
+ 10

(x− 1)(x− 2)

(−1− 1)(−1− 2)

=
5

3
x2 − 3x+

16

3
.

27

We can now see how to create a perfect secret sharing scheme of size n and
threshold t ≤ n.

Shamir’s secret sharing scheme

1. Alice views her secret as S ∈ Fp for some prime p > n and chooses a
random polynomial of the form f(x) = S + a1x+ a2x

2 + ...+ at−1x
t−1 ∈

Fp. She then chooses n random distinct values x1, x2, ..., xn ∈ Fp and
distributes the points Pi = (xi, f(xi)) to the n people.

2. Any t people can then reconstruct S by using Lagrange Interpolation to
find f and read off the constant term.

3. No t − 1 people can reconstruct S uniquely since there is more than one
degree t−1 polynomial passing through t−1 of the Pi (the corresponding
system of equations doesn’t have a unique solution).

Since we are working over Fp the above scheme is actually perfect. Knowledge
of only t− 1 of the Pi restricts the space of potential polynomials to an affine
space of dimension at least 1 with all constant terms appearing among these
polynomials equally (so that you learn nothing about S).

Example 7.7. Alice wants to share S = 5 ∈ F11 between n = 4 people with
threshold t = 3. She chooses the polynomial f(x) = 5 + 7x + 4x2 and creates
the points P1 = (1, 5), P2 = (2, 2), P3 = (5, 8), P4 = (7, 8).

Applying Lagrange Interpolation to any triple, say P1, P2, P3 gives secret S = 5:

f(x) = 5
(x− 2)(x− 5)

(1− 2)(1− 5)
+ 2

(x− 1)(x− 5)

(2− 1)(2− 5)
+ 8

(x− 1)(x− 2)

(5− 1)(5− 2)

= 5 + 7x+ 4x2.

The general quadratic passing through P1 and P2 say has the form:

α+ (4α+ 9)x+ (6α+ 7)x2,

for α ∈ F11. The constant term is arbitrary and so nothing is learned about S.

These lecture notes survey a lot of the major schemes in modern cryptography,
but we have only just scratched the surface. However, hopefully in reading
these notes you have become interested in the emerging world of mathematical
cryptography.

In other words, I hope you enjoyed the course...

28

