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What is a cyclotomic number field?

We begin with a basic definition.

Definition
A number field is a field K ⊇ Q such that the degree of the field
extension K/Q is finite. We refer to the degree of a number
field as the degree of the field extension K/Q, i.e. the
dimension of K as a Q-vector space.

Examples
The fields:

Q(
√

2) = {a + b
√

2 |a,b ∈ Q}

and
Q(

3
√

7) = {a + b 3
√

7 + c( 3
√

7)2 |a,b, c ∈ Q}

are number fields. They have degrees 2 and 3 respectively.
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We can create number fields using primitive nth roots of unity,
in doing this we get the cyclotomic number fields.

Definition
A cyclotomic number field is a number field of the form Q(ζn) for
some primitive nth root of unity.

It can be shown that the degree of the cyclotomic number field
Q(ζn) is φ(n) where φ is the Euler phi function.

Example
When n = 4 we can take ζ4 = i and so we see that the familliar
number field Q(i) = {a + bi |a,b ∈ Q} is actually a cyclotomic
number field. This is clearly a number field of degree 2 = φ(4).

For the purposes of this talk we only consider the case where n
is a prime p. Then we see that Q(ζp) has degree φ(p) = p − 1.
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In the prime case, letting ζp = ζ for ease of reading, we can use
the theory of field extensions to tell us that a generating set for
Q(ζ) is simply {1, ζ, ζ2, . . . , ζp−2}.

This tells us that:

Theorem
The field Q(ζ) can be written explicitly as:

Q(ζ) = {a0 + a1ζ + a2ζ
2 . . .+ ap−2ζ

p−2 |a0,a1, . . . ,ap−2 ∈ Q}

The aim of this talk is to show that there is actually a surprising
subfield of Q(ζ) for each prime p.
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What are cyclotomic number fields used for?

Cyclotomic number fields have a wide range of uses in number
theory:

Proving quadratic reciprocity. This can be achieved using
the Gauss sum that we investigate later.
Forming more general reciprocity laws for higher powers.
The cyclotomic number fields turn out to be the perfect
setting in which to study higher reciprocity laws.
We can make codes out of cyclotomic number fields.
Kummer used factorisations of certain ideals in cyclotomic
number fields to prove a large portion of Fermat’s last
theorem, when the exponent is a so called regular prime.
This was one of the major achievements of algebraic
number theory in the 19th century.
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Gauss used cyclotomic number fields in his studies of
polygon construction. He proved that the regular 17-gon is
constuctible using only ruler and compass. His argument
extends to prove an amazing theorem, that for a prime
p > 2 the regular p-gon is constructible if and only if p is a
Fermat prime.
Cyclotomic number fields feature in class field theory - the
topic of my project - although we won’t be seeing much of
this, we will get to see the Kronecker-Weber theorem in
action.
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The Galois group of a field extension

If we have a field extension L/K , we can consider the
automorphisms of L that fix the elements of K . These are the
maps from L to L that respect the operations of L and send the
elements of K to themselves.

It is easy to check that:

Theorem
The set of these automorphisms form a group under
composition. This is called the Galois group of the field
extension L/K , denoted Gal(L/K ).
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Example

The field Q(i) = {a + bi |a,b ∈ Q} has two automorphisms:

ι(a + bi) = a + bi

σ(a + bi) = a− bi

Both of these automorphisms fix elements of Q (set b = 0). It
can easily be shown that there are no more automorphisms,
thus Gal(Q(i)/Q) = {ι, σ} and so is isomorphic to Z/2Z, the
cyclic group of order 2.

We can impose certain conditions on a field extension to make
it so that the Galois group has the same order as the degree of
the extension. These extensions are called Galois extensions.
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Motivating the Galois correspondence

The Galois correspondence demonstrates the true power of
Galois theory.

Roughly, it says that when we work inside a Galois extension
L/K of finite degree, there is a one-to-one correspondence
between the subgroups of the Galois group Gal(L/K ) and the
fields lying in between L and K , the so called intermediate
fields.

An exact result here is that if we find a subgroup of order m
then there is a corresponding intermediate field of degree
|Gal(L/K )|

m over Q.
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What does Galois theory tell us about cyclotomic
number fields?

Let p be an odd prime and let ζ be a primitive pth root of unity.

The maps defined on Q(ζ) by:

σi : ζ 7−→ ζ i

for i = 1,2, . . . ,p − 1 are all automorphisms of Q(ζ) that fix Q.
In fact these are them all.

Thus:

Gal(Q(ζ)/Q) = {σ1, σ2, . . . , σp−1} with operation σiσj = σij

It is now easy to see that we have an isomorphism with
(Z/pZ)× via σi 7−→ i .
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Now (Z/pZ)× has a subgroup of order p−1
2 , the subgroup of

squares mod p.

By the Galois correspondence and the fact that the Galois
group is Abelian here, this implies the existence of a unique
intermediate field Q ⊂ K ⊂ Q(ζ) that has degree p−1

( p−1
2 )

= 2

over Q.

The interesting question is, what is this intermediate field K ?
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The quadratic Gauss sum

Gauss answered this question in his Disquisitiones
Arithmeticae. He cleverly constructed the following element of
Q(ζ) using the Legendre symbol:

G =

p−1∑
a=1

(
a
p

)
ζa

This is known as a Gauss sum. He then carried out a nice
manipulation and found that:

G2 = (−1)
p−1

2 p := p∗

This shows that G =
√

p∗ lies in Q(ζ). It was then clear to
Gauss that Q(

√
p∗) ⊂ Q(ζ). Since Q(

√
p∗) does in fact have

degree 2 over Q, we have found our quadratic subfield.
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Examples of the Gauss sum and the quadratic subfield

We carry out the constructions in the previous slide explicitly for
the cases when p = 3 and p = 5.

p = 3

We have that G = ζ − ζ2 so that G2 = (ζ − ζ2)2 = ζ2− 2ζ3 + ζ4.
But ζ3 = 1 and also since ζ 6= 1, we have that ζ2 + ζ + 1 = 0.
Using these facts we see that G2 = ζ2 − 2 + ζ = −1− 2 = −3,
so that G =

√
−3 and thus Q(

√
−3) ⊆ Q(ζ3).

p = 5

We have that G = ζ − ζ2 − ζ3 + ζ4 and we see that
G2 = . . . = −ζ − ζ2 − ζ3 − ζ4 + 4ζ5 = −(−1) + 4 = 5 using the
facts that ζ5 = 1 and ζ4 + ζ3 + ζ2 + 1 = 0. This shows us that
G =

√
5 and so Q(

√
5) ⊆ Q(ζ).
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Generalising this - The Kronecker-Weber theorem

In class field theory we study certain extensions of a number
field K . Specifically we look at the ones with Abelian Galois
group. Such an extension is called an Abelian extension.
The Kronecker-Weber theorem is a corollary of more general
theorems in class field theory. It says that:

Kronecker - Weber Theorem
Each finite abelian extension L of Q is contained inside a
cyclotomic number field Q(ζn) for some n ∈ N.

We have seen this in action in the previous slide. We have the
Abelian extension Q(

√
p∗) of Q. This is an Abelian extension

since it has Galois group isomorphic to Z/2Z, which is an
Abelian group. We then saw that this is contained inside the
cyclotomic field Q(ζp), which is predicted by the theorem above.



Introduction to cyclotomic number fields A bit of Galois theory Galois theory for cyclotomic number fields What’s next?

Generalising this - The Kronecker-Weber theorem

In class field theory we study certain extensions of a number
field K . Specifically we look at the ones with Abelian Galois
group. Such an extension is called an Abelian extension.
The Kronecker-Weber theorem is a corollary of more general
theorems in class field theory. It says that:

Kronecker - Weber Theorem
Each finite abelian extension L of Q is contained inside a
cyclotomic number field Q(ζn) for some n ∈ N.

We have seen this in action in the previous slide. We have the
Abelian extension Q(

√
p∗) of Q. This is an Abelian extension

since it has Galois group isomorphic to Z/2Z, which is an
Abelian group. We then saw that this is contained inside the
cyclotomic field Q(ζp), which is predicted by the theorem above.



Introduction to cyclotomic number fields A bit of Galois theory Galois theory for cyclotomic number fields What’s next?

Generalising this - The Kronecker-Weber theorem

In class field theory we study certain extensions of a number
field K . Specifically we look at the ones with Abelian Galois
group. Such an extension is called an Abelian extension.
The Kronecker-Weber theorem is a corollary of more general
theorems in class field theory. It says that:

Kronecker - Weber Theorem
Each finite abelian extension L of Q is contained inside a
cyclotomic number field Q(ζn) for some n ∈ N.

We have seen this in action in the previous slide. We have the
Abelian extension Q(

√
p∗) of Q. This is an Abelian extension

since it has Galois group isomorphic to Z/2Z, which is an
Abelian group. We then saw that this is contained inside the
cyclotomic field Q(ζp), which is predicted by the theorem above.



Introduction to cyclotomic number fields A bit of Galois theory Galois theory for cyclotomic number fields What’s next?

That’s all folks

The end.
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