< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

## Cyclotomic Number Fields

#### **Daniel Fretwell**

#### School of Mathematics and Statistics, University of Sheffield

#### Semester 1, 2010/2011

## Outline of talk



## Introduction to cyclotomic number fields

- 2 A bit of Galois theory
- 3 Galois theory for cyclotomic number fields

## What's next?



## What is a cyclotomic number field?

#### We begin with a basic definition.

#### Definition

A number field is a field  $K \supseteq \mathbb{Q}$  such that the degree of the field extension  $K/\mathbb{Q}$  is finite. We refer to the degree of a number field as the degree of the field extension  $K/\mathbb{Q}$ , i.e. the dimension of K as a  $\mathbb{Q}$ -vector space.

#### Examples

The fields:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$

and

$$\mathbb{Q}(\sqrt[3]{7}) = \{a + b\sqrt[3]{7} + c(\sqrt[3]{7})^2 \,|\, a, b, c \in \mathbb{Q}\}$$

are number fields. They have degrees 2 and 3 respectively.

## What is a cyclotomic number field?

#### We begin with a basic definition.

#### Definition

A number field is a field  $K \supseteq \mathbb{Q}$  such that the degree of the field extension  $K/\mathbb{Q}$  is finite. We refer to the degree of a number field as the degree of the field extension  $K/\mathbb{Q}$ , i.e. the dimension of K as a  $\mathbb{Q}$ -vector space.

#### Examples

The fields:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$

and

$$\mathbb{Q}(\sqrt[3]{7}) = \{a + b\sqrt[3]{7} + c(\sqrt[3]{7})^2 \,|\, a, b, c \in \mathbb{Q}\}$$

are number fields. They have degrees 2 and 3 respectively.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

## We can create number fields using primitive *n*th roots of unity, in doing this we get the cyclotomic number fields.

#### Definition

A cyclotomic number field is a number field of the form  $\mathbb{Q}(\zeta_n)$  for some primitive *n*th root of unity.

It can be shown that the degree of the cyclotomic number field  $\mathbb{Q}(\zeta_n)$  is  $\phi(n)$  where  $\phi$  is the Euler phi function.

#### Example

When n = 4 we can take  $\zeta_4 = i$  and so we see that the familiar number field  $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$  is actually a cyclotomic number field. This is clearly a number field of degree  $2 = \phi(4)$ .

For the purposes of this talk we only consider the case where *n* is a prime *p*. Then we see that  $\mathbb{Q}(\zeta_p)$  has degree  $\phi(p) = p - 1$ .

・ロット (雪) (日) (日) (日)

We can create number fields using primitive *n*th roots of unity, in doing this we get the cyclotomic number fields.

#### Definition

A cyclotomic number field is a number field of the form  $\mathbb{Q}(\zeta_n)$  for some primitive *n*th root of unity.

It can be shown that the degree of the cyclotomic number field  $\mathbb{Q}(\zeta_n)$  is  $\phi(n)$  where  $\phi$  is the Euler phi function.

#### Example

When n = 4 we can take  $\zeta_4 = i$  and so we see that the familiar number field  $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$  is actually a cyclotomic number field. This is clearly a number field of degree  $2 = \phi(4)$ .

For the purposes of this talk we only consider the case where *n* is a prime *p*. Then we see that  $\mathbb{Q}(\zeta_p)$  has degree  $\phi(p) = p - 1$ .

We can create number fields using primitive *n*th roots of unity, in doing this we get the cyclotomic number fields.

#### Definition

A cyclotomic number field is a number field of the form  $\mathbb{Q}(\zeta_n)$  for some primitive *n*th root of unity.

It can be shown that the degree of the cyclotomic number field  $\mathbb{Q}(\zeta_n)$  is  $\phi(n)$  where  $\phi$  is the Euler phi function.

#### Example

When n = 4 we can take  $\zeta_4 = i$  and so we see that the familiar number field  $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$  is actually a cyclotomic number field. This is clearly a number field of degree  $2 = \phi(4)$ .

For the purposes of this talk we only consider the case where *n* is a prime *p*. Then we see that  $\mathbb{Q}(\zeta_p)$  has degree  $\phi(p) = p - 1$ .

In the prime case, letting  $\zeta_{\rho} = \zeta$  for ease of reading, we can use the theory of field extensions to tell us that a generating set for  $\mathbb{Q}(\zeta)$  is simply  $\{1, \zeta, \zeta^2, \dots, \zeta^{p-2}\}$ .

This tells us that:

Theorem The field  $\mathbb{Q}(\zeta)$  can be written explicitly as:  $\mathbb{Q}(\zeta) = \{a_0 + a_1\zeta + a_2\zeta^2 \dots + a_{p-2}\zeta^{p-2} \mid a_0, a_1, \dots, a_{p-2} \in \mathbb{Q}\}$ 

The aim of this talk is to show that there is actually a surprising subfield of  $\mathbb{Q}(\zeta)$  for each prime *p*.

In the prime case, letting  $\zeta_p = \zeta$  for ease of reading, we can use the theory of field extensions to tell us that a generating set for  $\mathbb{Q}(\zeta)$  is simply  $\{1, \zeta, \zeta^2, \dots, \zeta^{p-2}\}$ .

This tells us that:

## Theorem The field $\mathbb{Q}(\zeta)$ can be written explicitly as: $\mathbb{Q}(\zeta) = \{a_0 + a_1\zeta + a_2\zeta^2 \dots + a_{p-2}\zeta^{p-2} \mid a_0, a_1, \dots, a_{p-2} \in \mathbb{Q}\}$

The aim of this talk is to show that there is actually a surprising subfield of  $\mathbb{Q}(\zeta)$  for each prime *p*.

In the prime case, letting  $\zeta_p = \zeta$  for ease of reading, we can use the theory of field extensions to tell us that a generating set for  $\mathbb{Q}(\zeta)$  is simply  $\{1, \zeta, \zeta^2, \dots, \zeta^{p-2}\}$ .

This tells us that:

## Theorem The field $\mathbb{Q}(\zeta)$ can be written explicitly as: $\mathbb{Q}(\zeta) = \{a_0 + a_1\zeta + a_2\zeta^2 \dots + a_{p-2}\zeta^{p-2} \mid a_0, a_1, \dots, a_{p-2} \in \mathbb{Q}\}$

The aim of this talk is to show that there is actually a surprising subfield of  $\mathbb{Q}(\zeta)$  for each prime *p*.

## What are cyclotomic number fields used for?

Cyclotomic number fields have a wide range of uses in number theory:

- Proving quadratic reciprocity. This can be achieved using the Gauss sum that we investigate later.
- Forming more general reciprocity laws for higher powers. The cyclotomic number fields turn out to be the perfect setting in which to study higher reciprocity laws.
- We can make codes out of cyclotomic number fields.
- Kummer used factorisations of certain ideals in cyclotomic number fields to prove a large portion of Fermat's last theorem, when the exponent is a so called regular prime. This was one of the major achievements of algebraic number theory in the 19th century.

(ロ) (同) (三) (三) (三) (○) (○)

- Gauss used cyclotomic number fields in his studies of polygon construction. He proved that the regular 17-gon is constuctible using only ruler and compass. His argument extends to prove an amazing theorem, that for a prime p > 2 the regular p-gon is constructible if and only if p is a Fermat prime.
- Cyclotomic number fields feature in class field theory the topic of my project - although we won't be seeing much of this, we will get to see the Kronecker-Weber theorem in action.

## Outline of talk



### Introduction to cyclotomic number fields



3 Galois theory for cyclotomic number fields

### What's next?

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

## The Galois group of a field extension

If we have a field extension L/K, we can consider the automorphisms of *L* that fix the elements of *K*. These are the maps from *L* to *L* that respect the operations of *L* and send the elements of *K* to themselves.

#### It is easy to check that:

#### Theorem

The set of these automorphisms form a group under composition. This is called the Galois group of the field extension L/K, denoted Gal(L/K).

## The Galois group of a field extension

If we have a field extension L/K, we can consider the automorphisms of *L* that fix the elements of *K*. These are the maps from *L* to *L* that respect the operations of *L* and send the elements of *K* to themselves.

It is easy to check that:

#### Theorem

The set of these automorphisms form a group under composition. This is called the Galois group of the field extension L/K, denoted Gal(L/K).

#### Example

The field  $\mathbb{Q}(i) = \{a + bi | a, b \in \mathbb{Q}\}$  has two automorphisms:

$$\iota(a+bi) = a+bi$$

$$\sigma(a+bi)=a-bi$$

Both of these automorphisms fix elements of  $\mathbb{Q}$  (set b = 0). It can easily be shown that there are no more automorphisms, thus  $\text{Gal}(\mathbb{Q}(i)/\mathbb{Q}) = \{\iota, \sigma\}$  and so is isomorphic to  $\mathbb{Z}/2\mathbb{Z}$ , the cyclic group of order 2.

We can impose certain conditions on a field extension to make it so that the Galois group has the same order as the degree of the extension. These extensions are called Galois extensions.

#### Example

The field  $\mathbb{Q}(i) = \{a + bi | a, b \in \mathbb{Q}\}$  has two automorphisms:

$$\iota(a+bi) = a+bi$$

$$\sigma(a+bi)=a-bi$$

Both of these automorphisms fix elements of  $\mathbb{Q}$  (set b = 0). It can easily be shown that there are no more automorphisms, thus  $\text{Gal}(\mathbb{Q}(i)/\mathbb{Q}) = \{\iota, \sigma\}$  and so is isomorphic to  $\mathbb{Z}/2\mathbb{Z}$ , the cyclic group of order 2.

We can impose certain conditions on a field extension to make it so that the Galois group has the same order as the degree of the extension. These extensions are called Galois extensions.

## Motivating the Galois correspondence

The Galois correspondence demonstrates the true power of Galois theory.

Roughly, it says that when we work inside a Galois extension L/K of finite degree, there is a one-to-one correspondence between the subgroups of the Galois group Gal(L/K) and the fields lying in between *L* and *K*, the so called intermediate fields.

An exact result here is that if we find a subgroup of order *m* then there is a corresponding intermediate field of degree  $\frac{|\operatorname{Gal}(L/K)|}{m}$  over  $\mathbb{Q}$ .

## Outline of talk



Introduction to cyclotomic number fields



Galois theory for cyclotomic number fields

### What's next?

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

# What does Galois theory tell us about cyclotomic number fields?

Let p be an odd prime and let  $\zeta$  be a primitive pth root of unity.

The maps defined on  $\mathbb{Q}(\zeta)$  by:



for i = 1, 2, ..., p - 1 are all automorphisms of  $\mathbb{Q}(\zeta)$  that fix  $\mathbb{Q}$ . In fact these are them all.

Thus:

 $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) = \{\sigma_1, \sigma_2, \dots, \sigma_{p-1}\}$  with operation  $\sigma_i \sigma_j = \sigma_{ij}$ 

It is now easy to see that we have an isomorphism with  $(\mathbb{Z}/p\mathbb{Z})^{\times}$  via  $\sigma_i \longmapsto i$ .

# What does Galois theory tell us about cyclotomic number fields?

Let *p* be an odd prime and let  $\zeta$  be a primitive *p*th root of unity. The maps defined on  $\mathbb{Q}(\zeta)$  by:

$$\sigma_i \,:\, \zeta \longmapsto \zeta^i$$

for i = 1, 2, ..., p - 1 are all automorphisms of  $\mathbb{Q}(\zeta)$  that fix  $\mathbb{Q}$ . In fact these are them all.

Thus:

 $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) = \{\sigma_1, \sigma_2, \dots, \sigma_{p-1}\}$  with operation  $\sigma_i \sigma_j = \sigma_{ij}$ 

It is now easy to see that we have an isomorphism with  $(\mathbb{Z}/p\mathbb{Z})^{\times}$  via  $\sigma_i \longmapsto i$ .

# What does Galois theory tell us about cyclotomic number fields?

Let *p* be an odd prime and let  $\zeta$  be a primitive *p*th root of unity. The maps defined on  $\mathbb{Q}(\zeta)$  by:

$$\sigma_i \,:\, \zeta \longmapsto \zeta^i$$

for i = 1, 2, ..., p - 1 are all automorphisms of  $\mathbb{Q}(\zeta)$  that fix  $\mathbb{Q}$ . In fact these are them all.

Thus:

$$Gal(\mathbb{Q}(\zeta)/\mathbb{Q}) = \{\sigma_1, \sigma_2, \dots, \sigma_{p-1}\}$$
 with operation  $\sigma_i \sigma_j = \sigma_{ij}$ 

It is now easy to see that we have an isomorphism with  $(\mathbb{Z}/p\mathbb{Z})^{\times}$  via  $\sigma_i \mapsto i$ .

Now  $(\mathbb{Z}/p\mathbb{Z})^{\times}$  has a subgroup of order  $\frac{p-1}{2}$ , the subgroup of squares mod p.

By the Galois correspondence and the fact that the Galois group is Abelian here, this implies the existence of a unique intermediate field  $\mathbb{Q} \subset K \subset \mathbb{Q}(\zeta)$  that has degree  $\frac{p-1}{\binom{p-1}{2}} = 2$  over  $\mathbb{Q}$ .

The interesting question is, what is this intermediate field *K*?

Now  $(\mathbb{Z}/p\mathbb{Z})^{\times}$  has a subgroup of order  $\frac{p-1}{2}$ , the subgroup of squares mod p.

By the Galois correspondence and the fact that the Galois group is Abelian here, this implies the existence of a unique intermediate field  $\mathbb{Q} \subset K \subset \mathbb{Q}(\zeta)$  that has degree  $\frac{p-1}{\binom{p-1}{2}} = 2$  over  $\mathbb{Q}$ .

The interesting question is, what is this intermediate field *K*?

## The quadratic Gauss sum

Gauss answered this question in his Disquisitiones Arithmeticae. He cleverly constructed the following element of  $\mathbb{Q}(\zeta)$  using the Legendre symbol:

$$G = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a$$

This is known as a Gauss sum. He then carried out a nice manipulation and found that:

$$G^2 = (-1)^{\frac{p-1}{2}}p := p^*$$

This shows that  $G = \sqrt{p^*}$  lies in  $\mathbb{Q}(\zeta)$ . It was then clear to Gauss that  $\mathbb{Q}(\sqrt{p^*}) \subset \mathbb{Q}(\zeta)$ . Since  $\mathbb{Q}(\sqrt{p^*})$  does in fact have degree 2 over  $\mathbb{Q}$ , we have found our quadratic subfield.

(ロ) (同) (三) (三) (三) (○) (○)

## The quadratic Gauss sum

Gauss answered this question in his Disquisitiones Arithmeticae. He cleverly constructed the following element of  $\mathbb{Q}(\zeta)$  using the Legendre symbol:

$$G = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a$$

This is known as a Gauss sum. He then carried out a nice manipulation and found that:

$$G^2 = (-1)^{\frac{p-1}{2}}p := p^*$$

This shows that  $G = \sqrt{p^*}$  lies in  $\mathbb{Q}(\zeta)$ . It was then clear to Gauss that  $\mathbb{Q}(\sqrt{p^*}) \subset \mathbb{Q}(\zeta)$ . Since  $\mathbb{Q}(\sqrt{p^*})$  does in fact have degree 2 over  $\mathbb{Q}$ , we have found our quadratic subfield.

## The quadratic Gauss sum

Gauss answered this question in his Disquisitiones Arithmeticae. He cleverly constructed the following element of  $\mathbb{Q}(\zeta)$  using the Legendre symbol:

$$G = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a$$

This is known as a Gauss sum. He then carried out a nice manipulation and found that:

$$G^2 = (-1)^{\frac{p-1}{2}}p := p^*$$

This shows that  $G = \sqrt{p^*}$  lies in  $\mathbb{Q}(\zeta)$ . It was then clear to Gauss that  $\mathbb{Q}(\sqrt{p^*}) \subset \mathbb{Q}(\zeta)$ . Since  $\mathbb{Q}(\sqrt{p^*})$  does in fact have degree 2 over  $\mathbb{Q}$ , we have found our quadratic subfield.

## Examples of the Gauss sum and the quadratic subfield

We carry out the constructions in the previous slide explicitly for the cases when p = 3 and p = 5.

#### p = 3

We have that  $G = \zeta - \zeta^2$  so that  $G^2 = (\zeta - \zeta^2)^2 = \zeta^2 - 2\zeta^3 + \zeta^4$ . But  $\zeta^3 = 1$  and also since  $\zeta \neq 1$ , we have that  $\zeta^2 + \zeta + 1 = 0$ . Using these facts we see that  $G^2 = \zeta^2 - 2 + \zeta = -1 - 2 = -3$ , so that  $G = \sqrt{-3}$  and thus  $\mathbb{Q}(\sqrt{-3}) \subseteq \mathbb{Q}(\zeta_3)$ .

#### $\rho = 5$

We have that  $G = \zeta - \zeta^2 - \zeta^3 + \zeta^4$  and we see that  $G^2 = \ldots = -\zeta - \zeta^2 - \zeta^3 - \zeta^4 + 4\zeta^5 = -(-1) + 4 = 5$  using the facts that  $\zeta^5 = 1$  and  $\zeta^4 + \zeta^3 + \zeta^2 + 1 = 0$ . This shows us that  $G = \sqrt{5}$  and so  $\mathbb{Q}(\sqrt{5}) \subseteq \mathbb{Q}(\zeta)$ .

## Examples of the Gauss sum and the quadratic subfield

We carry out the constructions in the previous slide explicitly for the cases when p = 3 and p = 5.

#### p = 3

We have that  $G = \zeta - \zeta^2$  so that  $G^2 = (\zeta - \zeta^2)^2 = \zeta^2 - 2\zeta^3 + \zeta^4$ . But  $\zeta^3 = 1$  and also since  $\zeta \neq 1$ , we have that  $\zeta^2 + \zeta + 1 = 0$ . Using these facts we see that  $G^2 = \zeta^2 - 2 + \zeta = -1 - 2 = -3$ , so that  $G = \sqrt{-3}$  and thus  $\mathbb{Q}(\sqrt{-3}) \subseteq \mathbb{Q}(\zeta_3)$ .

#### *p* = 5

We have that  $G = \zeta - \zeta^2 - \zeta^3 + \zeta^4$  and we see that  $G^2 = \ldots = -\zeta - \zeta^2 - \zeta^3 - \zeta^4 + 4\zeta^5 = -(-1) + 4 = 5$  using the facts that  $\zeta^5 = 1$  and  $\zeta^4 + \zeta^3 + \zeta^2 + 1 = 0$ . This shows us that  $G = \sqrt{5}$  and so  $\mathbb{Q}(\sqrt{5}) \subseteq \mathbb{Q}(\zeta)$ .

## Outline of talk



2 A bit of Galois theory

Galois theory for cyclotomic number fields

## What's next?

・ロット 金田 マス 日マ トロマ

## Generalising this - The Kronecker-Weber theorem

In class field theory we study certain extensions of a number field K. Specifically we look at the ones with Abelian Galois group. Such an extension is called an Abelian extension. The Kronecker-Weber theorem is a corollary of more general theorems in class field theory. It says that:

#### Kronecker - Weber Theorem

Each finite abelian extension *L* of  $\mathbb{Q}$  is contained inside a cyclotomic number field  $\mathbb{Q}(\zeta_n)$  for some  $n \in \mathbb{N}$ .

We have seen this in action in the previous slide. We have the Abelian extension  $\mathbb{Q}(\sqrt{p^*})$  of  $\mathbb{Q}$ . This is an Abelian extension since it has Galois group isomorphic to  $\mathbb{Z}/2\mathbb{Z}$ , which is an Abelian group. We then saw that this is contained inside the cyclotomic field  $\mathbb{Q}(\zeta_p)$ , which is predicted by the theorem above.

(ロ) (同) (三) (三) (三) (○) (○)

## Generalising this - The Kronecker-Weber theorem

In class field theory we study certain extensions of a number field K. Specifically we look at the ones with Abelian Galois group. Such an extension is called an Abelian extension. The Kronecker-Weber theorem is a corollary of more general theorems in class field theory. It says that:

#### Kronecker - Weber Theorem

Each finite abelian extension *L* of  $\mathbb{Q}$  is contained inside a cyclotomic number field  $\mathbb{Q}(\zeta_n)$  for some  $n \in \mathbb{N}$ .

We have seen this in action in the previous slide. We have the Abelian extension  $\mathbb{Q}(\sqrt{p^*})$  of  $\mathbb{Q}$ . This is an Abelian extension since it has Galois group isomorphic to  $\mathbb{Z}/2\mathbb{Z}$ , which is an Abelian group. We then saw that this is contained inside the cyclotomic field  $\mathbb{Q}(\zeta_p)$ , which is predicted by the theorem above.

## Generalising this - The Kronecker-Weber theorem

In class field theory we study certain extensions of a number field K. Specifically we look at the ones with Abelian Galois group. Such an extension is called an Abelian extension. The Kronecker-Weber theorem is a corollary of more general theorems in class field theory. It says that:

#### Kronecker - Weber Theorem

Each finite abelian extension *L* of  $\mathbb{Q}$  is contained inside a cyclotomic number field  $\mathbb{Q}(\zeta_n)$  for some  $n \in \mathbb{N}$ .

We have seen this in action in the previous slide. We have the Abelian extension  $\mathbb{Q}(\sqrt{p^*})$  of  $\mathbb{Q}$ . This is an Abelian extension since it has Galois group isomorphic to  $\mathbb{Z}/2\mathbb{Z}$ , which is an Abelian group. We then saw that this is contained inside the cyclotomic field  $\mathbb{Q}(\zeta_p)$ , which is predicted by the theorem above.

## That's all folks

The end.

