◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Level *p* paramodular congruences of Harder type.

Dan Fretwell

University of Sheffield (daniel.fretwell@sheffield.ac.uk)

Outline of talk

- 2 Algebraic modular forms
- Ibukiyama's correspondence

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Let $\Delta \in S_{12}(SL_2(\mathbb{Z}))$ be the discriminant function. It is a normalized Hecke eigenform with Hecke eigenvalues $\tau(n)$ (the Ramanujan tau function).

Since $\operatorname{ord}_{691}\left(\frac{\zeta(12)}{\pi^{12}}\right) > 0$ we observe a congruence with the weight 12 Eisenstein series:

Ramanujan

For all $n \ge 1$:

 $\tau(n) \equiv \sigma_{11}(n) \bmod 691.$

Thus for all primes *p*:

 $\tau(\boldsymbol{p}) \equiv 1 + \boldsymbol{p}^{11} \mod 691.$

・ロト・日本・モート ヨー うへの

Let $\Delta \in S_{12}(SL_2(\mathbb{Z}))$ be the discriminant function. It is a normalized Hecke eigenform with Hecke eigenvalues $\tau(n)$ (the Ramanujan tau function).

Since $\operatorname{ord}_{691}\left(\frac{\zeta(12)}{\pi^{12}}\right) > 0$ we observe a congruence with the weight 12 Eisenstein series:

Ramanujan

For all $n \ge 1$:

 $\tau(n) \equiv \sigma_{11}(n) \bmod 691.$

Thus for all primes *p*:

 $\tau(\boldsymbol{p}) \equiv \mathbf{1} + \boldsymbol{p}^{\mathbf{11}} \mod \mathbf{691}.$

・ロト・日本・モート ヨー うへの

Let $\Delta \in S_{12}(SL_2(\mathbb{Z}))$ be the discriminant function. It is a normalized Hecke eigenform with Hecke eigenvalues $\tau(n)$ (the Ramanujan tau function).

Since $\operatorname{ord}_{691}\left(\frac{\zeta(12)}{\pi^{12}}\right) > 0$ we observe a congruence with the weight 12 Eisenstein series:

Ramanujan

For all $n \ge 1$:

 $\tau(n) \equiv \sigma_{11}(n) \bmod 691.$

Thus for all primes *p*:

 $\tau(p) \equiv 1 + p^{11} \mod 691.$

G. Harder predicts an analogue of such congruences for Siegel cusp forms.

Harder's conjecture

Let $f \in S_{j+2k-2}(SL_2(\mathbb{Z}))$ be a normalized Hecke eigenform with Hecke eigenvalues a_n . Suppose there exists a "large prime" λ such that $\operatorname{ord}_{\lambda}\left(\frac{L(f,j+k)}{\Omega}\right) > 0$ (here Ω is a canonical period).

Then there exists a Hecke eigenform $F \in S_{j,k}(Sp_4(\mathbb{Z}))$ with Hecke eigenvalues b_n such that for all primes p:

$$b_p \equiv a_p + p^{j+k-1} + p^{k-2} \mod \Lambda$$

where $\Lambda | \lambda$ in $\mathbb{Q}_F \mathbb{Q}_f$.

A huge part of my PhD to studying the following version of the conjecture for prime level:

Harder's conjecture - level p paramodular version

Let $f \in S_{j+2k-2}^{new}(\Gamma_0(p))$ be a normalized Hecke eigenform with Hecke eigenvalues a_n . Suppose there exists a "large prime" λ such that $\operatorname{ord}_{\lambda}\left(\frac{L(f,j+k)}{\Omega}\right) > 0$ (here Ω is a canonical period).

Then there exists a Hecke eigenform $F \in S_{j,k}^{new}(K(p))$ with Hecke eigenvalues b_n such that for all primes $q \neq p$:

$$b_q\equiv a_q+q^{j+k-1}+q^{k-2} modes \Lambda$$

where $\Lambda | \lambda$ in $\mathbb{Q}_F \mathbb{Q}_f$ and Λ doesn't divide *p*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Known numerical evidence

- Level 1: Faber, Van der Geer (see 1-2-3 of modular forms).
- Level 2: Bergstrom et al (method specific to level 2).
- Other levels: Rare.

Outline of talk

Notation:

- G/Q connected reductive group such that G(ℝ) is compact modulo center,
- V finite dimensional representation of G,
- K_f compact open subgroup of $G(\mathbb{A}_f)$.

Definition

The space of algebraic modular forms $\mathcal{A}(G, K_f, V)$ consists of functions $f : G(\mathbb{A}_f) \to V$ such that $f(\gamma gk) = \gamma \cdot f(g)$ for all $\gamma \in G(\mathbb{Q}), g \in G(\mathbb{A}_f), k \in K_f$.

◆□ → ◆□ → ◆ = → ◆ = → のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Notation:

- G/Q connected reductive group such that G(ℝ) is compact modulo center,
- V finite dimensional representation of G,
- K_f compact open subgroup of $G(\mathbb{A}_f)$.

Definition

The space of algebraic modular forms $\mathcal{A}(G, K_f, V)$ consists of functions $f : G(\mathbb{A}_f) \to V$ such that $f(\gamma g k) = \gamma \cdot f(g)$ for all $\gamma \in G(\mathbb{Q}), g \in G(\mathbb{A}_f), k \in K_f$.

Fact 1

The "modular curve" $G(\mathbb{Q}) \setminus G(\mathbb{A}_f) / K_f$ is finite. Its size *h* is called the class number of *G* with respect to K_f .

Let $z_1, z_2, ..., z_h$ be representatives for the above. Then it is clear that $f \in \mathcal{A}(G, K_f, V)$ is fully determined by the values $f(z_1), f(z_2), ..., f(z_h)$.

Question: Can the values $f(z_i) \in V$ be arbitrary?

・ロト・日本・日本・日本・日本・日本

Fact 1

The "modular curve" $G(\mathbb{Q}) \setminus G(\mathbb{A}_f) / K_f$ is finite. Its size *h* is called the class number of *G* with respect to K_f .

Let $z_1, z_2, ..., z_h$ be representatives for the above. Then it is clear that $f \in \mathcal{A}(G, K_f, V)$ is fully determined by the values $f(z_1), f(z_2), ..., f(z_h)$.

Question: Can the values $f(z_i) \in V$ be arbitrary?

Fact 1

The "modular curve" $G(\mathbb{Q}) \setminus G(\mathbb{A}_f) / K_f$ is finite. Its size *h* is called the class number of *G* with respect to K_f .

Let $z_1, z_2, ..., z_h$ be representatives for the above. Then it is clear that $f \in \mathcal{A}(G, K_f, V)$ is fully determined by the values $f(z_1), f(z_2), ..., f(z_h)$.

Question: Can the values $f(z_i) \in V$ be arbitrary?

Theorem

The map $f \mapsto (f(z_1), f(z_2), ..., f(z_h))$ gives an isomorphism:

$$\mathcal{A}(G, K_f, V) \cong \oplus_{i=1}^h V^{\Gamma_i},$$

where $\Gamma_i = G(\mathbb{Q}) \cap z_i K_f z_i^{-1}$.

Note: This shows finite dimensionality of the spaces $\mathcal{A}(G, K_f, V)$ without having to use analytical tools.

Fact 2

Each Γ_i is a finite group.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Theorem

The map $f \mapsto (f(z_1), f(z_2), ..., f(z_h))$ gives an isomorphism:

$$\mathcal{A}(G, K_f, V) \cong \oplus_{i=1}^h V^{\Gamma_i},$$

where $\Gamma_i = G(\mathbb{Q}) \cap z_i K_f z_i^{-1}$.

Note: This shows finite dimensionality of the spaces $\mathcal{A}(G, K_f, V)$ without having to use analytical tools.

Fact 2

Each Γ_i is a finite group.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Theorem

The map $f \mapsto (f(z_1), f(z_2), ..., f(z_h))$ gives an isomorphism:

$$\mathcal{A}(G, K_f, V) \cong \oplus_{i=1}^h V^{\Gamma_i},$$

where $\Gamma_i = G(\mathbb{Q}) \cap z_i K_f z_i^{-1}$.

Note: This shows finite dimensionality of the spaces $\mathcal{A}(G, K_f, V)$ without having to use analytical tools.

Fact 2

Each Γ_i is a finite group.

・ロト・西ト・山田・山田・山口・

イロト 不良 とくほ とくほう 二日

Hecke operators

Choose $\mu \in G(\mathbb{A}_f)$ and consider the decomposition:

$$K_{f}\mu K_{f} = \prod \mu_{i}K_{f}$$

Definition

The Hecke operator T_{μ} acts on $\mathcal{A}(G, K_f, V)$ via:

$$T_{\mu}(f)(g) = \sum f(g\mu_i).$$

This sum makes sense since:

Fact 3

Any such decomposition of $K_{f\mu}K_{f}$ has finitely many μ_{i} 's.

イロト 不良 とくほ とくほう 二日

Hecke operators

Choose $\mu \in G(\mathbb{A}_f)$ and consider the decomposition:

$$K_{f}\mu K_{f} = \prod \mu_{i}K_{f}$$

Definition

The Hecke operator T_{μ} acts on $\mathcal{A}(G, K_f, V)$ via:

$$T_{\mu}(f)(g) = \sum f(g\mu_i).$$

This sum makes sense since:

Fact 3

Any such decomposition of $K_{f\mu}K_{f}$ has finitely many μ_{i} 's.

Hecke operators

Choose $\mu \in G(\mathbb{A}_f)$ and consider the decomposition:

$$K_{f}\mu K_{f} = \prod \mu_{i}K_{f}$$

Definition

The Hecke operator T_{μ} acts on $\mathcal{A}(G, K_f, V)$ via:

$$T_{\mu}(f)(g) = \sum f(g\mu_i).$$

This sum makes sense since:

Fact 3

Any such decomposition of $K_f \mu K_f$ has finitely many μ_i 's.

Outline of talk

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *D* be a definite quaternion algebra over \mathbb{Q} , ramified at a single prime *p*.

Consider the quaternionic unitary similitude group:

$$\mathrm{GU}_2(D) = \{ g \in \mathsf{M}_2(D) \, | \, g\overline{g}^T = \mu I, \mu \in \mathbb{Q}^{\times} \}.$$

Then GSp_4 and GU_2 are inner forms and $GU_2(D_{\infty}) = GU_2(\mathbb{H})$ is compact modulo center.

Ibukiyama's (conjectural) correspondence

There exists an isomorphism of Hecke modules:

 $S_{i,k}^{\mathsf{new}}(K(p)) \cong \mathcal{A}^{\mathsf{new}}(\mathsf{GU}_2(D), U, V_{j,k-3})$

where U and $V_{j,k-3}$ can be made explicit.

Let *D* be a definite quaternion algebra over \mathbb{Q} , ramified at a single prime *p*.

Consider the quaternionic unitary similitude group:

$$\operatorname{\mathsf{GU}}_2(D) = \{ \boldsymbol{g} \in \operatorname{\mathsf{M}}_2(D) \, | \, \boldsymbol{g}\overline{\boldsymbol{g}}^{\mathsf{T}} = \mu \boldsymbol{I}, \mu \in \mathbb{Q}^{\times} \}.$$

Then GSp_4 and GU_2 are inner forms and $GU_2(D_{\infty}) = GU_2(\mathbb{H})$ is compact modulo center.

Ibukiyama's (conjectural) correspondence

There exists an isomorphism of Hecke modules:

 $S_{j,k}^{\mathsf{new}}(K(p)) \cong \mathcal{A}^{\mathsf{new}}(\mathsf{GU}_2(D), U, V_{j,k-3})$

where U and $V_{j,k-3}$ can be made explicit.

Let *D* be a definite quaternion algebra over \mathbb{Q} , ramified at a single prime *p*.

Consider the quaternionic unitary similitude group:

$$\operatorname{\mathsf{GU}}_2(D) = \{ g \in \operatorname{\mathsf{M}}_2(D) \, | \, g\overline{g}^T = \mu I, \mu \in \mathbb{Q}^{\times} \}.$$

Then GSp_4 and GU_2 are inner forms and $GU_2(D_{\infty}) = GU_2(\mathbb{H})$ is compact modulo center.

Ibukiyama's (conjectural) correspondence

There exists an isomorphism of Hecke modules:

$$S_{j,k}^{\mathsf{new}}(K(p)) \cong \mathcal{A}^{\mathsf{new}}(\mathsf{GU}_2(D), U, V_{j,k-3})$$

where *U* and $V_{j,k-3}$ can be made explicit.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Hecke operators for $q \neq p$:

Fix $\operatorname{GU}_2(\mathbb{Q}_q) \cong \operatorname{GSp}_4(\mathbb{Q}_q)$ and choose $u \in \operatorname{GU}_2(\mathbb{A}_f)$ such that $u_q \mapsto \operatorname{diag}(1, 1, q, q)$ and $u_r = \operatorname{id}$ for $r \neq q$.

Then:

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Hecke operators for $q \neq p$:

Fix $\operatorname{GU}_2(\mathbb{Q}_q) \cong \operatorname{GSp}_4(\mathbb{Q}_q)$ and choose $u \in \operatorname{GU}_2(\mathbb{A}_f)$ such that $u_q \mapsto \operatorname{diag}(1, 1, q, q)$ and $u_r = \operatorname{id}$ for $r \neq q$.

Then:

$$T_q \longleftrightarrow q^{rac{j+2k-6}{2}} T_u.$$

What is known about this space of algebraic modular forms?

- h = 1 if and only if p = 2, 3, 5, 7, 11 (lbukiyama).
- When h = 1 I have explicit algorithms to compute:
 - The group $\Gamma = \operatorname{GU}_2(D) \cap U$.
 - The Hecke representatives for T_u when $q \neq p$.

So at levels 2, 3, 5, 7, 11 I can easily compute Hecke eigenvalues for $F \in S_{j,k}^{new}(K(p))$ (using a trace formula by Dummigan), hence I can test Harder's congruence.

What is known about this space of algebraic modular forms?

- h = 1 if and only if p = 2, 3, 5, 7, 11 (lbukiyama).
- When h = 1 I have explicit algorithms to compute:
 - The group $\Gamma = \operatorname{GU}_2(D) \cap U$.
 - The Hecke representatives for T_u when $q \neq p$.

So at levels 2, 3, 5, 7, 11 I can easily compute Hecke eigenvalues for $F \in S_{j,k}^{\text{new}}(K(p))$ (using a trace formula by Dummigan), hence I can test Harder's congruence.

Example for level 3

Consider the unique normalized eigenform $f \in S_{16}^{\text{new}}(\Gamma_0(3))$. It has $a_2 = -234$.

Magma tells us that $\operatorname{ord}_{109}\left(\frac{L(f,10)}{\Omega}\right) = 1$.

It turns out that $\dim(S_{2,8}^{\text{new}}(K(3))) = 1$.

Using my algorithms and the trace formula we get $tr(T_u) = -\frac{39}{8}$ so that $b_2 = -2^6 \left(\frac{39}{8}\right) = -312$.

$$-312 \equiv -234 + 2^9 + 2^6 \mod 109.$$

Example for level 3

Consider the unique normalized eigenform $f \in S_{16}^{\text{new}}(\Gamma_0(3))$. It has $a_2 = -234$.

Magma tells us that $\operatorname{ord}_{109}\left(\frac{L(f,10)}{\Omega}\right) = 1$.

It turns out that $\dim(S_{2,8}^{\text{new}}(K(3))) = 1$.

Using my algorithms and the trace formula we get $tr(T_u) = -\frac{39}{8}$ so that $b_2 = -2^6 \left(\frac{39}{8}\right) = -312$.

$$-312 \equiv -234 + 2^9 + 2^6 \mod 109.$$

Example for level 3

Consider the unique normalized eigenform $f \in S_{16}^{\text{new}}(\Gamma_0(3))$. It has $a_2 = -234$.

Magma tells us that $\operatorname{ord}_{109}\left(\frac{L(f,10)}{\Omega}\right) = 1$.

It turns out that $\dim(S_{2,8}^{\text{new}}(K(3))) = 1$.

Using my algorithms and the trace formula we get $tr(T_u) = -\frac{39}{8}$ so that $b_2 = -2^6 \left(\frac{39}{8}\right) = -312$.

$$-312 \equiv -234 + 2^9 + 2^6 \mod 109.$$

Example for level 3

Consider the unique normalized eigenform $f \in S_{16}^{\text{new}}(\Gamma_0(3))$. It has $a_2 = -234$.

Magma tells us that $\operatorname{ord}_{109}\left(\frac{L(f,10)}{\Omega}\right) = 1$.

It turns out that $\dim(S_{2,8}^{\text{new}}(K(3))) = 1$.

Using my algorithms and the trace formula we get $tr(T_u) = -\frac{39}{8}$ so that $b_2 = -2^6 \left(\frac{39}{8}\right) = -312$.

$$-312 \equiv -234 + 2^9 + 2^6 \mod 109.$$

Example for level 3

Consider the unique normalized eigenform $f \in S_{16}^{\text{new}}(\Gamma_0(3))$. It has $a_2 = -234$.

Magma tells us that $\operatorname{ord}_{109}\left(\frac{L(f,10)}{\Omega}\right) = 1$.

It turns out that $\dim(S_{2,8}^{\text{new}}(K(3))) = 1$.

Using my algorithms and the trace formula we get $tr(T_u) = -\frac{39}{8}$ so that $b_2 = -2^6 \left(\frac{39}{8}\right) = -312$.

$$-312 \equiv -234 + 2^9 + 2^6 \mod 109.$$

What next?

- Test Harder's conjecture for cases where dim(S^{new}_{j,k}(K(p))) ≥ 2 or h ≠ 1. Both of these provide a tougher challenge computationally.
- Explain theoretically why we expect to find such congruences for paramodular forms as opposed to other level *p* structures.
- Find congruences of "local origin" between level 1 and level *p*, where instead of looking for large primes dividing an *L*-value we look for them dividing a single Euler factor.

What next?

- Test Harder's conjecture for cases where dim(S^{new}_{j,k}(K(p))) ≥ 2 or h ≠ 1. Both of these provide a tougher challenge computationally.
- Explain theoretically why we expect to find such congruences for paramodular forms as opposed to other level *p* structures.
- Find congruences of "local origin" between level 1 and level *p*, where instead of looking for large primes dividing an *L*-value we look for them dividing a single Euler factor.

What next?

- Test Harder's conjecture for cases where dim(S^{new}_{j,k}(K(p))) ≥ 2 or h ≠ 1. Both of these provide a tougher challenge computationally.
- Explain theoretically why we expect to find such congruences for paramodular forms as opposed to other level *p* structures.
- Find congruences of "local origin" between level 1 and level *p*, where instead of looking for large primes dividing an *L*-value we look for them dividing a single Euler factor.

Thank you for listening!

