
MATH320

Mathematical Cryptography

2025/26

Dr. Dan Fretwell

(d.fretwell@lancaster.ac.uk)

Contents

1 Classical Cryptography: A brief history 1

1.1 The Caesar cipher: What would Julius Caesar do? 1

1.2 Substitution ciphers: What would Mary Queen of Scots do? 2

1.3 The Vigenère cipher: What would secret Victorian lovers do? 5

1.4 The One Time Pad: What would the president do? 7

1.5 The Index of Coincidence . 9

1.6 The Mutual Index of Coincidence . 12

2 Mechanical Cryptography: An industrial revolution in security 16

2.1 The Enigma cipher . 16

2.2 Attacking Enigma . 20

3 Linear Feedback Shift Registers 25

3.1 The basics . 25

3.2 The Main Theorem . 29

4 Public Key Cryptography: Asymmetric security in the digital era 33

4.1 Diffie-Hellman Key Exchange . 33

4.2 RSA . 37

4.3 El-Gamal . 39

4.4 Digital Signatures . 42

5 Factorisation methods 48

5.1 Trial division . 48

5.2 Fermat’s method . 49

5.3 The Pollard Rho method for factoring . 50

5.4 Dixon’s method . 52

6 Discrete Log methods 56

6.1 Brute force . 56

6.2 Baby-Step Giant-Step . 56

6.3 The Pollard Rho method for discrete logs . 57

6.4 Index Calculus . 59

7 Post Quantum Cryptography: The potential future of security 64

7.1 Knapsack schemes . 64

7.2 A simple noisy scheme . 67

7.3 Lattices and Gauss reduction . 70

7.4 NTRU . 74

8 Appendix 78

8.1 Relative frequency table for the English language 78

8.2 Mutual Index of Coincidence table for Example 1.31 79

8.3 ASCII table . 80

1 Classical Cryptography: A brief history

Information is a valuable asset. However, it is often necessary to keep certain pieces of information

secret from others. This has been the case ever since the dawn of time!

Mathematical Cryptography concerns the use of mathematical tools and structures in order to

provide data security. This is not just an interesting and exciting topic, but is a crucial area of

research in our current digital age, since more and more sensitive data is being captured than ever

before.

In this chapter we first begin by looking to the past and studying classical encryption methods.

1.1 The Caesar cipher: What would Julius Caesar do?

Cryptography is the “art of secret writing”. In modern language, the main idea is that one can

encrypt messages taken from a set M by applying an encryption map, e : M → C (with C

some other set). There are of course many choices for e and C, but we wish to choose them so that

it will be infeasible to reconstruct the plaintext message m ∈ M purely from the ciphertext

message c = e(m) ∈ C. We also want to choose e so that it is efficient to compute e(m).

How would friends be able to read the message? The sender has been clever...the encryption map

e = ek secretly depends on the knowledge of a key k ∈ K, as does the corresponding decryption

map dk : Im(ek)→M satisfying dk ◦ ek = idM . Anyone knowing the key can compute both maps

ek and dk efficiently.

We usually assume that the sets M,C and K are finite, but they need not be. For most of the

first half of this course we will take M = C = {A,B,C...,Z} to be the usual alphabet, but again they

need not be. We will also often identify letters of the alphabet with elements of {0, 1, ..., 25} via:

A −→ 0 B −→ 1 ... Y −→ 24 Z −→ 25.

If the sender wishes a friend to read their messages then they can be told the key k. This will then

allow them to decrypt messages by computing dk(c) = (dk ◦ ek)(m) = idM(m) = m.

A general principle of Kerckhoffs is that the security of the above process should depend only on

keeping the key secure (this seems obvious, right?). Later we’ll see that modern Cryptography

does not follow this principle!

A silly example:

It will soon be Eve’s birthday, and she has been strongly hinting all year that she would like a new

MacBook Pro...but it has to be the newest 2024 model with 16-inch screen, 1TB SSD and all the

other bells and whistles.

Alice is a seemingly devoted friend and has bought her one, but wants to make sure Eve’s (only)

other friend Bob hasn’t done the same. She types out a text to Bob (Alice always writes in capitals

since she is constantly in a state of extreme emotion):

1

OMG, I SPENT LIKE THOUSANDS ON THIS MACBOOK FOR EVE. I WAS LIKE WHAT THE HELL AND

THE GUY IN THE STORE WAS LIKE YOU NEED A NEW FRIEND. DID YOU LIKE GET ONE TOO?

However, Alice wants to make absolutely sure that Eve will not see this message, otherwise the

surprise will be spoiled! She decides to use a classical technique to encrypt the message.

Definition 1.1. The Caesar cipher with key k ∈ {0, 1, ..., 25} is the cipher with encryption/decryption
maps as follows:

If m ∈ M is a plaintext letter then the ciphertext letter c = ek(m) is given by shifting m forwards

k places in the alphabet (wrapping around to A if reaching Z).

We decrypt the ciphertext letter c ∈M (i.e. compute the corresponding plaintext letter m = dk(c))

by shifting c backwards k places in the alphabet (wrapping around to Z if reaching A).

Example 1.2. If Alice chooses her key to be k = 3 then she gets the following ciphertext:

RPJ, L VSHQW OLNH WKRXVDQGV RQ WKLV PDFERRN IRU HYH. L ZDV OLNH ZKDW WKH KHOO DQG

WKH JXB LQ WKH VWRUH ZDV OLNH BRX QHHG D QHZ IULHQG. GLG BRX OLNH JHW RQH WRR?

If we identify letters with numbers as earlier then we can write the encryption/decryption maps

mathematically as follows:

ek : {0, 1, ..., 25} −→ {0, 1, ..., 25}
m 7−→ c ≡ m+ k mod 26

dk : {0, 1, ..., 25} −→ {0, 1, ..., 25}
c 7−→ m ≡ c− k mod 26

Exercise 1.3. Check that the mathematical encryption/decryption maps satisfy dk ◦ ek = id.

The Caesar cipher was used by emperor Julius Caesar in Ancient Rome to communicate battle

plans between various camps. This is a very simple method of encryption by today’s standards,

since it is very easy to brute force all possible 26 shifts and hence decrypt any ciphertext. However,

back then this was a completely new thing and so was perfectly secure (also few people could read

or write).

1.2 Substitution ciphers: What would Mary Queen of Scots do?

The Caesar cipher shifts plaintext letters by a fixed amount in the alphabet. Mathematically

speaking, a sequence of plaintext values m1,m2, ...,mt are encrypted to a sequence of ciphertext

values c1, c2, ..., ct via the map ci ≡ mi + k mod 26, where k ∈ {0, 1, ..., 25} is the key.

However, as mentioned above this method clearly provides very little security since it is extremely

easy to check all 26 possible keys...even on paper.

2

There are many ways to generalise the Caesar cipher. One is to notice that the map:

{0, 1, ..., 25} −→ {0, 1, ..., 25}
x 7−→ x+ k mod 26

is a simple example of bijection. In general, we could have used any permutation of this set.

Recall that for each set X we have a group SX of permutations of X, i.e. bijections σ : X → X.

The group operation is composition. In particular, if X = {x1, x2, ..., xn} is finite then we write Sn

for the group SX and elements σ ∈ SX act by σ(xi) = xσ(i). So we can think of S26 as the group

of permutations of each of the sets M = C = {A,B,C...,Z} and {0, 1, ..., 25}.

Definition 1.4. The monoalphabetic substitution cipher with key σ ∈ S26 is the cipher with

encryption/decryption maps:

eσ : {0, 1, ..., 25} −→ {0, 1, ..., 25}
mi 7−→ ci = σ(mi)

dσ : {0, 1, ..., 25} −→ {0, 1, ..., 25}
ci 7−→ mi = σ−1(ci).

Example 1.5. If Alice chooses her key to be σ ∈ S26 with cycle decomposition:

σ = (0 1)(2 3)(4 5)...(24 25)

(i.e. we swap 0←→ 1, 2←→ 3 etc) then she gets the following ciphertext:

PNH, J TOFMS KJLF SGPVTBMCT PM SGJT NBDAPPL EPQ FUF. J XBT KJLF XGBS SGF GFKK BMC SGF

HVZ JM SGF TSPQF XBT KJLF ZPV MFFC B MFX EQJFMC. CJC ZPV KJLF HFS PMF SPP?

Such ciphers have been incredibly popular throughout history. One famous use of substitution

ciphers was by Mary Queen of Scots in Tudor times to communicate a plot to assassinate

Queen Elizabeth I with her conspirators (although this is an example with M ̸= C).

Example 1.6. The Caesar cipher was insecure because we could brute force all 26 possible keys

quickly. How many keys does the monoalphabetic substitution cipher have?

We have |S26| = 26!, since there are 26 possibilities for σ(0), and for each there are 25 possibilities

for σ(1), then for each there are 24 possibilities for σ(2) etc.

Note that 26! = 403291461126605635584000000, an astronomical number!

3

Given the huge number of keys you might believe that the monoalphabetic substitution cipher is

secure. However, given enough ciphertext it’s possible to use simple statistical methods to decrypt.

The idea is simple...since we always send a given plaintext letter to the same ciphertext letter, we

are not changing the frequencies of each letter. Couple this with the fact that certain letters in

English are used more than others and we have an attack!

The most common letters used in the English language are ETAOINSHRDLU (in this order). For

example, if you take any sufficiently large amount of English text, you’ll find that roughly 12.7% of

the letters are the letter E. This means that even though we don’t know what σ(E) is, we can take

a guess since it’s likely to be the letter that appears roughly 12.7% of the time in the ciphertext

message.

See the Appendix for a full table of expected letter frequencies in the English language.

Example 1.7. Suppose we intercept the following ciphertext message:

SGF OQPAKFN XJSG SGF NPMPBKOGBAFSJD TVATSJSVSJPM DJOGFQ JT SGBS KJLF KFSSFQT BKXBZT

HFS TFMS SP KJLF KFSSFQT. SGF EQFRVFMDJFT PE KFSSFQT JM SGF OKBJMSFWS BQF OQFTFQUFC JM

SGF DJOGFQSFWS.

We make a table of letter frequencies:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

3 7 1 4 2 28 10 1 0 13 9 2 7 2 6 6 10 1 25 10 1 3 2 2 0 1

The most common letters in the ciphertext are F and S. We guess that F = σ(E) and S = σ(T)

and see what happens:

TGE OQPAKEN XJTG TGE NPMPBKOGBAETJD TVATTJTVTJPM DJOGEQ JT TGBT KJLE KETTEQT BKXBZT

HET TEMT TP KJLE KETTEQT. TGE EQERVEMDJET PE KETTEQT JM TGE OKBJMTEWT BQE OQETEQUEC JM

TGE DJOGEQTEWT.

The letter G is quite common and the word TGE could be THE. We make the guess that G = σ(H):

THE OQPAKEN XJTH THE NPMPBKOHBAETJD TVATTJTVTJPM DJOHEQ JT THBT KJLE KETTEQT BKXBZT

HET TEMT TP KJLE KETTEQT. THE EQERVEMDJET PE KETTEQT JM THE OKBJMTEWT BQE OQETEQUEC JM

THE DJOHEQTEWT.

Continuing on in this fashion eventually gives the plaintext:

THE PROBLEM WITH THE MONOALPHABETIC SUBSTITUTION CIPHER IS THAT LIKE LETTERS ALWAYS

GET SENT TO LIKE LETTERS. THE FREQUENCIES OF LETTERS IN THE PLAINTEXT ARE PRESERVED IN

THE CIPHERTEXT.

Exercise 1.8. Why should Alice stop using the word LIKE so often if she wants to use a monoal-

phabetic substitution cipher to communicate with Bob?

4

1.3 The Vigenère cipher: What would secret Victorian lovers do?

The monoalphabetic substitution cipher is one way to generalise the Caesar cipher, but it suffers

from insecurity due to the fact that it preserves letter frequencies. The Vigenère cipher is an

example of a polyalphabetic substitution cipher, one where the key used changes from plaintext

letter to plaintext letter.

Recall that the Caesar cipher encrypts via the map ek(mi) ≡ mi + k mod 26. The idea of the

Vigenère cipher is to make k variable.

Definition 1.9. The Vigenère cipher with key k = (k1, k2, ..., kn) ∈ {0, 1, ..., 25}n is the cipher

with encryption/decryption maps:

ek : {0, 1, ..., 25} −→ {0, 1, ..., 25}
mi 7−→ ci ≡ mi + ki mod n mod 26

dk : {0, 1, ..., 25} −→ {0, 1, ..., 25}
dk 7−→ mi ≡ ci − ki mod n mod 26

In other words, we have multiple Caesar shifts and we apply them to plaintext letters in order

(cycling around to k1 when we reach kn). We call the integer n ≥ 1 the key length.

Exercise 1.10. Show that the Caesar cipher is just the Vigenère cipher with key length n = 1.

Example 1.11. If Alice chooses k = (1, 2) ∈ {0, 1, ..., 25}2 as her key then she gets the following

ciphertext:

POH, K TRFPU NJMF VIQVUBPEU PP UJJU NCDDPQL HPT FXF. K XCT NJMF YICU VIG IGMN BPE VIG

HWZ KO VIG TVPTF YBU MKLG ZQV PFGE C OGX HSKFPE. FJF ZQV NJMF IFV PPF VPQ?

Note that by varying the shifts we can now have different plaintext letters being encrypted to the

same ciphertext letter and also the same plaintext letters being encrypted to different ciphertext

letters. For example, in the above example we see that the word MACBOOK is encrypted to NCDDPQL,

demonstrating both points.

This destroys the letter frequencies, hence frequency analysis is useless!

Example 1.12. To demonstrate this point, suppose that we instead used a longer key, say k =

(1, 2, 3, 4, 5, 6) ∈ {0, 1, ..., 25}6 then the ciphertext and letter frequencies are:

POJ, M XVFPW PNQF VKSZYBPGW TT UJLW RGDDRSP LPT HZJ. O XCV PNQF YKEY ZIG KIQR BPG XMK

HWB MS ZIG VXTXF YDW QOLG BSZ TFGG E SKX HUMJTE. FLH DUV NLOJ MFV RRJ ZPQ?

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 4 1 4 3 7 8 4 3 6 5 5 5 3 4 9 5 5 5 6 3 6 5 6 4 6

5

Note that we could instead choose a keyword as our key, and convert this to numbers in order to

get our shifts. This makes it easier to communicate the key with your friend.

Example 1.13. If Alice chooses keyword BOB then she would encrypt her message using the key

k = (1, 14, 1) ∈ {0, 1, ..., 25}3 of length n = 3.

The Vigenère cipher was a very popular cipher from the late 1500’s through to the mid 1800’s. In

particular, it was often used in the Victorian era to allow secret lovers to communicate their affairs

in public newspapers.

For a long time the Vigenère cipher was thought to be unbreakable and was often referred to as

le chiffrage indéchiffrable (the indecipherable cipher). However, in the 1860’s an attack on

Vigenère was found by Friedrich Kasiski that worked quite well for long ciphertexts.

The Kasiski test tries to identify the key length n. The main idea is to observe that if repeated

strings of letters in the plaintext are encrypted with the same parts of the key then the resulting

ciphertext strings must also repeat.

Example 1.14. If we encrypt THE THE THE THE with the key k = (1, 2) ∈ {0, 1, ..., 25}2 then we

get UJF VIG UJF VIG.

We see that the first and third instances of the word THE were both encrypted to UJF. This was

because they were both encrypted using the same sequence of shifts (1, 2).

The same is true for the second and fourth instances, but now the encrypted string is VIG since

these were instead encrypted with the sequence of shifts (2, 1).

Kasiski’s idea was to look for repeated strings in the ciphertext. Assuming that these were en-

crypted with the same part of the key, the spacings would then reveal information about the key

lengths!

Example 1.15. We’ll look at the following ciphertext, encrypted using an unknown Vigenère key-

word:

6

ZPGDL RJLAJ KPYLX ZPYYG LRJGD LRZHZ QYJZQ REPVM SWRZY RIGZH ZVREG KWIVS

SAOLT NLIUW OLDIE AQEWF IIYKH BJOWR HDOGC QHKWA JYAGG EMISR ZQOQH OAVLK

BJOFR YLVPS RTGIU AVMSW LZGMS EVWPC DMJSV JQBRN KLPCF IOWHV KXJBJ PMFKR

QTHTK OZRGQ IHBMQ SBIVD ARDYM QMPBU NIVXM TZWQV GEFJH UCBOR VWPCD XUWFT

QMOOW JIPDS FLUQM OEAVL JGQEA LRKTI WVEXT VKRRG XANI

If we look through the ciphertext we find lots of repeated trigrams:

Trigram Ciphertext position Distance Factorisation

AVL 117, 258 141 3 · 47
BJO 86, 121 35 5 · 7
DLR 4, 25 21 3 · 7
GDL 3.24 21 3 · 7
LRJ 5, 21 16 24

MSW 40, 138 98 2 · 72

PCD 149, 233 84 22 · 3 · 7
QMO 241, 254 13 13

VMS 39, 137 98 2 · 72

VWP 147, 231 84 22 · 3 · 7
WPC 148, 232 84 22 · 3 · 7
ZHZ 28, 49 21 3 · 7

Assuming that most of these were encrypted using the same part of the keyword, it seems likely

that the key is of length n = 7 (note that this isn’t an exact science...sometimes repeated trigrams

will occur by chance, as is the case for AVL, LRJ and QMO).

Once you have a reasonable guess at the keyword length n, you can proceed in many ways (e.g. if

n is small then you can simply brute force all possibilities). Over the next two lectures we’ll see

good statistical attacks that work in practice.

1.4 The One Time Pad: What would the president do?

At this point in the course, every cipher we have seen has some sort of weakness. A natural question

might pose itself to you...does there exist a cipher that is guaranteed to be secure?

It turns out that we aren’t too far from the answer to this question.

Definition 1.16. If m = m1,m2, ...,mt is a plaintext message then the One Time Pad with key

k = (k1, k2, ..., kt) ∈ {0, 1, ..., 25}t is the cipher with encryption/decryption maps:

ek : {0, 1, ..., 25} −→ {0, 1, ..., 25}
mi 7−→ ci ≡ mi + ki mod 26

dk : {0, 1, ..., 25} −→ {0, 1, ..., 25}
dk 7−→ mi ≡ ci − ki mod 26

7

In other words, we use the Vigenère cipher but with a key as long as the message.

Note that if the key is chosen uniformly at random then the One Time Pad is provably secure.

The reason is as follows:

Example 1.17. Suppose we receive the ciphertext AAA, encrypted using a One Time Pad chosen

uniformly at random. Then the potential plaintexts CAT and DOG are equally likely, since the

corresponding encryption keys had the same probability of being chosen by Alice.

For the same reason, every string of length three is equally likely to be the plaintext. Because of

this fact we cannot learn anything about the plaintext from the ciphertext.

Before we get too excited, the One Time Pad does come with some disadvantages:

• The key has to be the same length as the plaintext message, and so will be huge. Commu-

nicating this with your friends is quite inefficient and is hard to do securely!

• To have perfect security, the key needs to be generated uniformly at random. This is

extremely hard to do, especially by a human!

• As the name implies, you should only ever use the key once. The reason for this is that

if we use the same key k to encrypt plaintext messages m and m′ then the corresponding

ciphertext messages c and c′ are given by ci ≡ mi + ki mod 26 and c′i ≡ m′
i + ki mod 26.

Subtracting gives ci − c′i ≡ mi −m′
i mod 26, which is completely independent of the key!

This is easier to demonstrate by picture:

In the first two rows we add the same random bitstring to two pictures (working mod 2). In

the third row we add the ciphertexts (same as subtracting mod 2) and get an amalgamation

of the original pictures. The key has been completely removed, revealing the two pictures!

Historically, the One Time Pad was often used to encrypt phone calls between the presidents of the

USA and the USSR. Random bit strings would be generated and sent securely via big diplomatic

bags, printed on nitrocellulose sheets (so that they could be easily burned after use).

8

1.5 The Index of Coincidence

We have just seen that the Kasiski test can be used to determine the potential key length of a

Vigenère ciphertext, by searching for repeated strings in the text. What do we do next?

Suppose that we have a Vigenère ciphertext message c = c1c2...ct, encrypted using key k =

(k1, k2, ..., kn). By definition of the encryption map we see that the letters c1, c1+n, c1+2n, ... were

encrypted using the same shift k1. Similarly, for each 1 ≤ i ≤ n we find that ci, ci+n, ci+2n, ... were

encrypted using the same shift ki.

Definition 1.18. If c = c1c2...ct is a Vigenère ciphertext message, encrypted using a key of length

n then the strings:

s1 = c1 c1+n c1+2n ...

s2 = c2 c2+n c2+2n ...

...

sn = cn c2n c3n ...

are called the partial ciphertexts of c.

Example 1.19. Returning to the Vigenère ciphertext in the previous section we find that the partial

ciphertexts are:

s1 = ZLXRHRRHWLOEHDWEOKLILWVLHPHQBYNWHWFJULRXX

s2 = PAZJZEZZITLWBOAMQBVUZPJPVMTIIMIQUPTIQJKTA

s3 = GJPGQPYVVNDFJGJIHJPAGCQCKFKHVQVVCCQPMGTVN

s4 = DKYDYVRRSLIIOCYSOOSVMDBFXKOBDMXGBDMDOQIKI

s5 = LPYLJMIESIEIWQARAFRMSMRIJRZMAPMEOXOSEEWR

s6 = RYGRZSGGAUAYRHGZVRTSEJNOBQRQRBTFRUOFAAVR

s7 = JLLZQWZKOWQKHKGQLYGWVSKWJTGSDUZJVWWLVLEG

Assuming the key is indeed of length n = 7 we find that s1 was encrypted using shift k1, s2 by shift

k2, etc.

The question now is, how do we find the shifts? We could try and brute force all 267 possibilities,

but this is not an easy task...even on a (standard) computer!

One way to proceed is to remember that a Caesar cipher is an example of a monoalphabetic

substitution cipher...so that we can try to use frequency analysis on each of the strings si. If we

look for common letters in each si and make educated guesses then this might tell us the shifts

used.

9

Example 1.20. In s1 we see that the most common letters are H, L, and W. Guessing that H

shifts back to E would imply that L shifts back to I and W shifts back to T. This seems like a pretty

consistent guess, so perhaps k1 = 4.

However, this is not an exact science...as if we do the same for s2 we find that the most common

letters are I, Z and P. Guessing that any of these shift back to E leads to issues with the other two

(one of them would shift back to either V or X, which seems unlikely).

We’ll see soon that a better method exists for deducing information about the shifts of the si if we

know the key length. However, first we take a necessary detour.

Let’s go back to the problem of finding the key length n. Given what we discovered above, a new

method presents itself for doing this:

Pseudoalgorithm

1. Set potential key length to be n = a.

2. Find the partial ciphertexts s1, s2, ..., sa.

3. Run an interesting statistical test on each si to determine whether it could have been en-

crypted using a monoalphabetic substitution cipher, as opposed to being “random”.

4. If successful then guess that the key length is a. Otherwise, increase by 1 and start again.

The question now is how to find good statistics that distinguish text generated by a monoalphabetic

substitution cipher from “random” text. The Index of Coincidence is one such statistic.

Definition 1.21. The Index of Coincidence of a string s = s1s2...st is given by:

IoC(s) =
Σ26

i=1Ni(s)(Ni(s)− 1)

t(t− 1)
,

where Ni(s) is the number of times the ith letter of the alphabet appears in s.

There is a simple interpretation of this statistic.

Lemma 1.22. IoC(s) is the probability of picking two symbols uniformly at random from s and

observing the same letter.

Proof. The total number of ways of picking two symbols from s is
(
t
2

)
= t(t−1)

2
. The number of

ways of picking two symbols that are the ith letter of the alphabet is
(
Ni(s)

2

)
= Ni(s)(Ni(s)−1)

2
(since

there are Ni(s) possibilities to pick from first and then Ni(s)− 1 left to pick from second).

It follows that the probability of picking two symbols uniformly at random from s and observing

the same letter is:
Σ26

i=1
Ni(s)(Ni(s)−1)

2
t(t−1)

2

= IoC(s).

10

Example 1.23. The string

s1 = ZLXRHRRHWLOEHDWEOKLILWVLHPHQBYNWHWFJULRXX

from our running example has Index of Coincidence:

IoC(s1) =
6(5) + 6(5) + 5(4) + 4(3) + ...

41 · 40
≈ 0.062,

since there are 6 instances of the letters L and H, 5 instances of the letter W, 4 instances of the

letter R etc.

Now suppose that we are given a string s and are asked to figure out if it came from a monoal-

phabetic substitution cipher or whether it is generated by sampling from the alphabet uniformly

at random. We can use the Index of Coincidence to help us decide this!

Theorem 1.24. Suppose that s = s1s2...st is a string of text.

• If s was generated by sampling from the alphabet uniformly at random then

IoC(s) ≈ 1

26
≈ 0.0385.

• If s was generated by a monoalphabetic substitution cipher of English text then

IoC(s) ≈ 0.0656.

Proof. (Sketch)

• If the string is generated uniformly then the expect number of occurrences of the ith letter

of the alphabet is t
26

(since each letter is equally likely to appear).

It follows that for t large enough:

IoC(s) ≈
∑26

i=1
t
26
(t
26
− 1)

t(t− 1)
=

1

262
·
∑26

i=1 t(t− 26)

t(t− 1)
≈ 1

262
·
∑26

i=1 t(t− 1)

t(t− 1)
=

26

262
=

1

26
.

• First note that if we apply a substitution key σ ∈ S26 to s then the number of occurrences of

the ith letter in s is equal to the number of occurrences of the σ(i)th letter in eσ(s), so that

Ni(s) = Nσ(i)(eσ(s)) for each 1 ≤ i ≤ 26. It follows that IoC(s) = IoC(eσ(s)) (the terms in

the sum are simply permuted, so give the same total).

We now only need to understand the Index of Coincidence of a piece of English text (since

applying any dσ to s leaves the value invariant). In a string of English text of length t we

expect there to be Ni ≈ pi
100
t occurrences of the letter i, where pi is the number found in row

i of the table in Appendix 8.1.

It follows that for t large enough:

IoC(s) ≈
∑26

i=1
pi
100
t(pi

100
t− 1)

t(t− 1)
=

1

1002
·
∑26

i=1 p
2
i t(t− 100)

t(t− 1)
≈ 1

1002
·
∑26

i=1 p
2
i t(t− 1)

t(t− 1)

=

∑26
i=1 p

2
i

1002
≈ 0.0656.

11

We can now use the Index of Coincidence as a statistical tool to decide the key length. When

we test the correct key length we should get a bunch of partial ciphertext that each have Index

of Coincidence close to 0.0656. For incorrect key lengths we will instead observe values close to

0.0385.

Example 1.25. If we run the pseudoalgorithm on our running example ciphertext for key lengths

4 ≤ n ≤ 11 we get the following table:

Key length IoC values for partial ciphertexts

4 0.034, 0.042, 0.039, 0.035

5 0.038, 0.039, 0.043, 0.027, 0.036

6 0.038, 0.038, 0.039, 0.038, 0.032, 0.033

7 0.062, 0.057, 0.065, 0.059, 0.060, 0.064, 0.064

8 0.037, 0.029, 0.038, 0.030, 0.034, 0.057, 0.040, 0.039

9 0.032, 0.036, 0.028, 0.030, 0.026, 0.032, 0.045, 0.047, 0.056

We see that in most rows the IoC values are mostly low (close to 0.0385) and so the corresponding

partial ciphertexts si are likely to be “random”.

However, in the row corresponding to key length n = 7 we see that the values are much higher

(close to 0.0656) and so the corresponding partial ciphertexts si are likely to be monoalphabetic

substitution ciphers.

Based on this evidence, it looks likely that the key length is n = 7, agreeing with the outcome of the

Kasiski test that we did.

1.6 The Mutual Index of Coincidence

So far, we have two good ways of determining the key size n (Kasiski test and Index of Coincidence),

but we are still faced with the problem of decrypting the partial ciphertexts s1, s2, ..., sn.

We know that each si has been encrypted by the corresponding key shift ki, which is a special case

of a monoalphabetic substitution cipher...but what do we do beyond this?

The Index of Coincidence told us how to recognise a substitution ciphertext from a uniformly

random one. Maybe we can find a statistical tool to tell us when two strings are encrypted using

the same substitution key?

Definition 1.26. The Mutual Index of Coincidence of two strings s = s1s2...st1 and r =

r1r2...rt2 is given by:

MutIoC(s, r) =
Σ26

i=1Ni(s)Ni(r)

t1t2
.

As with the IoC, there is a simple interpretation of this statistic.

12

Lemma 1.27. MutIoC(s, r) is the probability of picking two symbols, one uniformly at random

from s and one uniformly random from r, and observing the same letter.

Proof. The total number of ways of picking a pair of symbols, one from s and one from r, is t1t2.

The number of ways of picking the ith letter of the alphabet from s is Ni(s). Similarly, the number

of ways of picking the ith letter of the alphabet from r is Ni(r).

It follows that the probability of picking the pair of symbols and observing the same letter is:

Σ26
i=1Ni(s)Ni(r)

t1t2
= MutIoC(s, r).

Exercise 1.28. Show that IoC(s) ≈ MutIoC(s, s) for large enough t1 = t2 = t (the difference being

that with MutIoC we are allowed to pick the same symbol from s twice. This was not the case

with IoC).

As promised, we are now ready to see why the Mutual Index of Coincidence is good at telling apart

substitution ciphers that have been encrypted using the same key.

Theorem 1.29. Suppose that s = s1s2...st1 and r = r1r2...rt2 are encrypted strings of English text,

using the same monoalphabetic substitution key. Then

MutIoC(s, r) ≈ 0.0656.

Proof. (Sketch) First note that if we apply a substitution key σ ∈ S26 to s then the number of

occurrences of the ith letter in s is equal to the number of occurrences of the σ(i)th letter in eσ(s),

so that Ni(s) = Nσ(i)(eσ(s)) for each 1 ≤ i ≤ 26. Similarly Ni(r) = Nσ(i)(eσ(r)). It follows that

MutIoC(s, r) = MutIoC(eσ(s), eσ(r)) (the terms in the sum are simply permuted, so give the same

total).

We now only need to understand the Mutual Index of Coincidence for a pair of English texts (since

applying dσ to both s and r leaves the value invariant). In a string of English text of length t we

expect there to be Ni ≈ pi
100
t occurrences of the letter i, where pi is the number found in row i of

the table in Appendix 8.1.

It follows that for t1 and t2 large enough:

MutIoC(s) ≈
∑26

i=1
pi
100
t1 · pi

100
t2

t1t2
=

∑26
i=1 p

2
i

1002
≈ 0.0656.

It’s a bit harder to pin down what happens if the two strings are encrypted using different keys

σ1, σ2 ∈ S26, but in practice you usually find that this gives

MutIoC(s, r) ≈
∑26

i=1 pσ1(i)pσ2(i)

1002
≈ 0.0385.

(As we keep saying, it’s not an exact science. Some substitution keys won’t change the MutIoC

value much, but most will).

13

Exercise 1.30. Check that this really is the case with a few simple examples.

We are now ready to launch a full scale attack on the Vigenère cipher.

Assume that we have a Vigenère ciphertext c and that we have done tests to “determine” the

key size n (i.e. Kasiski test or IoC). We split c into its partial ciphertexts s1, s2, ..., sn. Each si is

encrypted using a Caesar shift with key ki (so is a monoalphabetic substitution).

As discussed before we need to determine the shifts ki. The key idea is to notice that if we shift sj by

βi,j ≡ ki−kj mod 26 for each 1 ≤ i ≤ n then we get a string eβi,j
(sj) that is encrypted with a Caesar

shift of ki, which is the same shift that si is encrypted with. It follows that MutIoC(si, eβi,j
(sj))

should be close to 0.0656 (since both are encrypted using the same substitution key).

This suggests the following plan of attack:

Pseudoalgorithm

1. For each 1 ≤ i < j ≤ n we compute the list {MutIoC(si, eβ(sj)) | 0 ≤ β ≤ 25}.

2. We look through these lists and find the values of β that give MutIoC values close to 0.0656,

giving us guesses for (some of) the values βi,j.

3. We solve the system of linear congruences βi,j ≡ ki−kj mod 26 and hopefully get a small set

of solutions. If not, we go back to the lists and add more equations.

4. Finally, once a small dimensional set of solutions is found, we brute force and look for a

decryption that gives a meaningful plaintext.

Again, this is not an exact science, the above pseudoalgorithm can fail. If we make a wrong guess

for one of the βi,j then the set of equations could have no solutions. Some amount of flexibility is

often required when making these guesses.

Example 1.31. Let’s return to our running example with key length n = 7 and partial ciphertexts:

s1 = ZLXRHRRHWLOEHDWEOKLILWVLHPHQBYNWHWFJULRXX

s2 = PAZJZEZZITLWBOAMQBVUZPJPVMTIIMIQUPTIQJKTA

s3 = GJPGQPYVVNDFJGJIHJPAGCQCKFKHVQVVCCQPMGTVN

s4 = DKYDYVRRSLIIOCYSOOSVMDBFXKOBDMXGBDMDOQIKI

s5 = LPYLJMIESIEIWQARAFRMSMRIJRZMAPMEOXOSEEWR

s6 = RYGRZSGGAUAYRHGZVRTSEJNOBQRQRBTFRUOFAAVR

s7 = JLLZQWZKOWQKHKGQLYGWVSKWJTGSDUZJVWWLVLEG

After tedious computation, we find the table of values MutIoC(si, eβ(sj)) given in Appendix 8.2.

Looking at the table, we observe quite a few values that are close to 0.0656:

14

i j β MutIoC(si, eβ(sj))

1 3 1 0.067

1 4 19 0.071

1 6 16 0.071

2 3 6 0.060

3 4 18 0.073

3 5 24 0.067

3 6 15 0.074

3 7 10 0.069

4 6 23 0.066

4 7 18 0.071

6 7 21 0.069

This leads to the system of linear congruences:

k1 − k3 ≡ 1 mod 26

k1 − k4 ≡ 19 mod 26

k1 − k6 ≡ 16 mod 26

k2 − k3 ≡ 6 mod 26

k3 − k4 ≡ 18 mod 26

k3 − k5 ≡ 24 mod 26

k3 − k6 ≡ 15 mod 26

k3 − k7 ≡ 10 mod 26

k4 − k6 ≡ 23 mod 26

k4 − k7 ≡ 18 mod 26

k6 − k7 ≡ 21 mod 26

The general solution to these equations is given by

(λ, λ− 21, λ− 1, λ− 19, λ− 25, λ− 16, λ− 11) λ ∈ Z/26Z.

Trying each of the 26 possible values of λ and decrypting gives the following:

λ Keyword Decrypted Text

0 AFZHBKP ZKHWKHULVKDOOWXUQRXWWREHWKHKHURRIPBRZQOLIH...

1 BGAICLQ YJGVJGTKUJCNNVWTPQWVVQDGVJGJGTQQHOAQYPNKHG...

2 CHBJDMR XIFUIFSJTIBMMUVSOPVUUPCFUIFIFSPPGNZPXOMJGF...

3 DICKENS WHETHERISHALLTURNOUTTOBETHEHEROOFMYOWNLIFE...

4 EJDLFOT VGDSGDQHRGZKKSTQMNTSSNADSGDGDQNNELXNVMKHED...
...

...
...

We immediately recognise that λ = 3, giving keyword DICKENS, and that the plaintext is the opening

passage of David Copperfield:

WHETHER I SHALL TURN OUT TO BE THE HERO OF MY OWN LIFE OR WHETHER THAT STATION WILL BE

HELD BY ANYBODY ELSE THESE PAGES MUST SHOW TO BEGIN MY LIFE WITH THE BEGINNING OF MY LIFE

I RECORD THAT I WAS BORN AS I HAVE BEEN INFORMED AND BELIEVE ON A FRIDAY AT TWELVE OCLOCK

AT NIGHT IT WAS REMARKED THAT THE CLOCK BEGAN TO STRIKE AND I BEGAN TO CRY SIMULTANEOUSLY

We’ve broken the Vigenère cipher!

15

2 Mechanical Cryptography: An industrial revolution in

security

The ciphers discussed so far are all examples of historical ciphers, dating from Ancient Rome

through to the early 1900’s. This was by no means a complete list...there were many other ciphers

in use during this time. However, all suffered from similar issues:

1. Encryption/decryption was often a lengthy process, since it had to be done by hand.

2. Because of this, ciphers had to be simple enough in design so that a human could understand

and use them.

3. This meant that most ciphers had underlying weaknesses due to underlying language patterns.

Statistical attacks rendered these ciphers insecure for large message lengths.

Around the turn of the 20th Century, the Second Industrial Revolution began...bringing with it

an age of mechanical discovery. We had now started to harvest electricity and use it to build

machines that could perform complicated tasks way more efficiently than humans. Around this

time, cryptographers wondered whether machines could be used for encryption/decryption, in such

a way that would solve all of the above issues.

In this section we’ll study one of the most famous examples of such a machine, the Enigma machine,

and learn about one of the most famous feats in classical cryptography, Turing’s attack on the

Enigma cipher.

2.1 The Enigma cipher

The Enigma machine is perhaps one of the most famous cipher machines in history. Designed

by German engineer Arthur Scherbius in 1918, the machine was designed to provide widespread

security for commercial, diplomatic and military communications. However, the most well-known

use of the Enigma machine was by the Nazi’s during World War II.

Let’s take a look at the machine in detail. In this course we’ll study a slightly simplified version,

but the real machine wasn’t too different from this.

16

To use the machine, you would:

• First set up the machine according to a secret choice of machine settings (this is your key).

• Encrypt by typing the plaintext message using the keyboard and recording the corresponding

ciphertext letters that light up on the display.

• Decrypt by setting up the machine using the identical key settings, typing the ciphertext

message using the keyboard and recording the corresponding plaintext letters that light up

on the display.

This is much easier than the previous ciphers we have seen...you didn’t even need to know how the

machine worked to encrypt/decrypt!

How does the machine work though? Let’s open the hood and have a look. The inside of the

machine consisted of many electrical wires. Each time a button is pressed on the keyboard it

completes a circuit, hence lighting up the corresponding ciphertext letter. The ciphery goodness

happens in the middle.

Step 1: The Plugboard (Stecker)

When a letter is pressed on the keyboard, an electrical signal is sent through the plugboard. This

consists of a certain number of plugs connecting distinct pairs of letters. This gives a simple

substitution cipher that swaps (some) pairs of letters.

How many ways can this be done?

Lemma 2.1. If m plugs are used then there are
(
26
2m

)
(2m− 1)(2m− 3)...(3)(1) possible plugboard

settings.

Proof. Choosingm pairs of letters to be swapped is equivalent to first choosing the set of 2m letters

taking part in the swaps and then choosing how to pair these letters up.

There are
(
26
2m

)
ways to choose 2m letters from 26. Fix such a choice.

17

Pick one of the 2m letters. Then there are 2m− 1 choices of letters to pair this letter with. Now

choose one of the remaining 2m− 2 letters. There are 2m− 3 choices of letters to pair this letter

with. Continuing on we see that there are (2m− 1)(2m− 3)...(3)(1) ways to form the pairings.

It follows that the total number of plugboard settings is then
(
26
2m

)
(2m− 1)(2m− 3)...(3)(1).

Proposition 2.2. There are a total of 532985208200576 plugboard settings.

Proof. We can use up to 13 plugs and so the total number of plugboard settings is:

1 +
∑

1≤m≤13

(
26

2m

)
(2m− 1)(2m− 3)...(3)(1) = ... = 532985208200576.

In practice, the Germans used exactly 10 plugs, giving a smaller total number of plugboard settings:(
26

20

)
(19)(17)...(3)(1) = 150738274937250.

Step 2: The Rotors

So far, all we have done is a simple substitution of letters. However, after the signal has left the

plugboard it enters the rotors. These are three “wheels” that have internal wirings that permute

the letters A-Z. The signal passes through the three rotors in turn.

Wait a minute...isn’t this just doing yet another bunch of substitution ciphers? Yes it is, but

the interesting thing about the rotors is that they rotate! After each key is pressed, the right

rotor rotates clockwise by one step...hence changing the overall permutation (the internal wiring

of the rotor is unchanged). After 26 rotations of the right rotor, the middle rotor rotates one step

clockwise. After 26 rotations of the middle rotor, the left rotor rotates one step clockwise.

Proposition 2.3. The number of initial rotor wirings is:

26!3 = 65592937459144468297405473968303761468794234820105359750856704000000000000000000

Proof. Since there are 26! possible substitution keys and three independent rotors, there are 26!3

possible initial rotor wirings.

There are a huge number of rotor choices and settings, but in practice the Germans only used

three of five fixed rotors (called I,II,III,IV,V). This leads to a much smaller number of different

initial rotor settings: (
5

3

)
· 6 · 263 = 1054560

since we must choose the three rotors, their ordering and their starting position (we can rotate

them to set up different initial wirings).

Step 3: The Reflector (Umkehrwalze)

After making it through the plugboard and the rotors, the signal is then sent through a reflec-

tor. Similar to the plugboard, the internal wiring pairs up all of the letters A-Z...giving another

substitution key.

18

Proposition 2.4. There are a total of 7905853580625 reflector settings.

Proof. This is equivalent to the number of plugboard settings with exactly m = 13 plugs, i.e.(
26

26

)
(25)(23)...(3)(1) = 7905853580625.

Again, there are a huge number of reflectors in general but in practice the Germans only used one

of two fixed reflectors at any given time (called B and C).

Step 4: The final surprise

After all of this took place, the signal gets sent backwards through the machine. This adds another

layer of complexity to the whole thing!

The other reason for doing this (and for including the reflector) is to make encryption/decryption a

symmetric process, so that the machine could be used for both without needing different settings.

Now we can ask the big question...how many Enigma keys are there in total?

Corollary 2.5. The total number of Enigma keys is

276389158444019800290882309785572710383834311090283282

283180099646935619811363530997760000000000000000000000.

In practice, the Germans could choose one from the following number of Enigma keys

317925110435652720000

Proof. These numbers are simply the products of the corresponding numbers of keys from steps

1-3.

Both of these numbers are astronomical and are much bigger than anything we saw before! The

Germans chose to communicate their keys via codebooks:

Each day, a new set of machine settings would be used. This made it incredibly difficult for

adversaries to keep up to date with the German advances...to be able to read the latest messages

any attack essentially needed to work within a day!

19

How should we think of the Enigma cipher intuitively? Well, the Vigenère cipher extended the

Caesar cipher to allow for variable shifts, i.e. ek(mi) ≡ mi + ki mod n mod 26. The Enigma cipher

extends the monoalphabetic substitution cipher to allow variable permutations. Before the ith key

press the machine is set up to give a substitution key σi ∈ S26, so that encryption is simply:

eσi
: {0, 1, ..., 25} −→ {0, 1, ..., 25}

mi 7−→ ci = σi(mi)

dσi
: {0, 1, ..., 25} −→ {0, 1, ..., 25}

ci 7−→ mi = σ−1
i (ci).

Granted, σi is built in a very complicated way...but it’s still just a permutation depending on i.

2.2 Attacking Enigma

Given the complicated nature of the Enigma cipher, we might believe that it’s completely secure.

Surprisingly, it isn’t...although it isn’t completely insecure! (The common misconception is that

Enigma is “completely broken”... but this isn’t true, there are still encrypted Enigma messages

that we have failed to decipher!).

In this section we’ll see roughly how a known plaintext attack works. The full story would

easily take a full semester of lectures, since this was the product of many years of research by many

different groups of mathematicians/cryptographers.

We will make the assumption that we are dealing with the standard German usage of the Enigma

machine...so that there are exactly 10 plugs in the plugboard, a choice of 3 from 5 rotors of fixed

wiring (that we know) and a choice of two reflectors of fixed wiring (that we know).

Remark 2.6. We take it for granted that we know the fixed rotor/reflector wirings used by the

Germans, but these had to be figured out the hard way. Polish mathematician Marian Rejewski

was able to do this using intel from the French...not by using statistical tools but by using results

in group theory. This was the dawn of the usefulness of Pure Mathematics in Cryptography.

Later he was joined by other Polish cryptographers to launch a full scale attack on Enigma. Re-

jewski’s achievement of understanding the internal wirings used by the Germans is often described

as one of the major feats of 20th Century Cryptography.

20

First, let’s model the Enigma machine mathematically. Before the ith key press the machine will

perform a permutation σi ∈ S26. Let’s look at σi in more detail.

Recall that when a keyboard button is pressed, the signal first travels through the plugboard. Let

P ∈ S26 be the fixed permutation corresponding to the plugs inserted.

The signal then goes through three rotors, which induce permutations R1,i, R2,i, R3,i ∈ S26 that

depend on i.

After the rotors the signal goes through the reflector, which induces yet another fixed permutation

S ∈ S26.

Finally, the signal travels backwards through the rotors and the plugboard. It follows that the

permutations we see at this stage are the inverses of the permutations going forward.

So all in all:

σi = P−1R−1
1,iR

−1
2,iR

−1
3,iSR3,iR2,iR1,iP.

We’ve seen things like this in group theory before!

Definition 2.7. Let G be a group and g, h ∈ G. The conjugate of g by h is h−1gh ∈ G.

The following result about conjugation in permutation groups has been referred to as “the theorem

that won World War II”.

Theorem 2.8. Any conjugate of g ∈ Sn has the same cycle type as g.

Proof. See the exercise sheet.

Example 2.9. Let g = (14)(235) ∈ S5 be a permutation of cycle type (2, 3) and h = (12345) ∈ S5.

Then:

h−1gh = (15432)(14)(235)(12345) = (124)(35) ∈ S5

is also a permutation of cycle type (2, 3)

Why is this harmless theorem useful for attacking the Enigma cipher?

Corollary 2.10. The Enigma cipher cannot encrypt a letter to itself.

Proof. Note that S swaps all of the letters A-Z in pairs, and so the cycle type of S ∈ S26 is

(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2). It then follows that σi ∈ S26 also has this cycle type, since it’s

visibly a conjugate of S.

No such permutation can have a fixed point, and so the substitution key given by σi cannot send

a letter to itself.

The above fact proved to be a significant flaw in the Enigma cipher. The reason is that it helps us

to locate the position of known plaintext.

Example 2.11. Suppose that we intercept the following ciphertext encrypted with the Enigma

cipher:

21

XMRPTUBWMZQLFPYH...

If we know that the word CRYPTOGRAPHY appears in the ciphertext then we can narrow down the

potential positions by ignoring positions where letters would be encrypted to themselves:

X M R P T U B G M Z Q L F P Y H . . .

C R Y P T O G R A P H Y

C R Y P T O G R A P H Y

C R Y P T O G R A P H Y

C R Y P T O G R A P H Y

C R Y P T O G R A P H Y

Once you have some known plaintext and have done the above to figure out where it appears in

the ciphertext, it’s time for stage two of the attack.

Since the plugboard is the part of the machine with the most possibilities (under the German

setup), we try to attack this and instead model σi as:

σi = P−1QiP,

with Qi = R−1
1,iR

−1
2,iR

−1
3,iSR3,iR2,iR1,i.

The idea is to use the known plaintext/ciphertext pairs and look for “loops”. This gives us infor-

mation about the Qi that we can hopefully use to narrow down the possibilities.

Example 2.12. Consider the following plaintext/ciphertext pairs:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

mi O B E R K O M M A N D O D E R W E H R M A C H T

ci Z M G E R F E W M L K M T A W X T S W V U I N Z

We find that the permutations P and Qi must satisfy the following equations:

(P−1Q9P)(A) = M

(P−1Q7P)(M) = E

(P−1Q14P)(E) = A

This implies that (P−1Q7Q9Q14P)(E) = E, since:

(P−1Q7Q9Q14P) = (P−1Q7P
−1Q9PP

−1Q14P) = (P−1Q7P)(P
−1Q9P)(P

−1Q14P).

Rearranging gives (Q7Q9Q14)(P (E)) = P (E). We learn that whatever the letter P (E) is it must be

fixed by the permutation Q7Q9Q14.

Suppose that we take a guess at the initial rotor and reflector settings. Then we would be able to

compute the permutation Q7Q9Q14, since each of the Qi are related to these initial configurations

by “rotation”. If this has no fixed points then we’ve proved that our guess was impossible!

22

The natural question now is whether we expect to make progress using the above equation. Un-

fortunately, the answer is no if we model the permutation Q7Q9Q14 as uniformly random.

Lemma 2.13. Let σ ∈ Sn be chosen uniformly random. The expected number of fixed points is 1.

Proof. Let X be the random variable on Sn measuring the number of fixed points. Then

X = X1 +X2 + ...+Xn,

where

Xi =

1 if i is fixed

0 if i isn’t fixed
.

It then follows that:

E[X] = E[X1 +X2 + ...+Xn] =
n∑

i=1

E[Xi].

If σ is picked uniformly at random then the probability that it fixes i is given by (n−1)!
n!

= 1
n
, and so

E[Xi] = 0 · n− 1

n
+ 1 · 1

n
=

1

n
.

Then the claim follows since

E[X] =
n∑

i=1

E[Xi] = n · E[X1] = n · 1
n
= 1.

However, if we can find another loop containing E then we can make progress!

Example 2.14. Going back to the example, we find that

(P−1Q4P)(R) = E

(P−1Q15P)(R) = W

(P−1Q8P)(M) = W

(P−1Q7P)(M) = E

This implies that (P−1Q4Q
−1
15 Q8Q

−1
7 P)E = E and rearranging gives (Q4Q

−1
15 Q8Q

−1
7)(P (E)) = P (E).

This gives us another permutation that has P (E) as a fixed point.

If we model the pair of permutations Q7Q9Q14 and Q4Q
−1
15 Q8Q

−1
7 as being uniformly random and

independent then we expect there to be 1
26

fixed points (see exercises). Loosely interpreted, this

means that out of the 2109120 possible settings for the rotors/reflector, only around 2109120
26

= 81120

are expected to give a solution to both equations.

This has reduced the number of potential rotor/reflector settings by a factor of 26. If we can find

other pairs of cycles then we can continue to reduce the number of possibilities by further factors

of 26. In fact, since log26(2109120) ≈ 4.47, we require only around 4-5 pairs of loops to uniquely

determine the settings.

23

Once the rotors/reflector settings are known, it is relatively easy to figure out the plugboard

settings (we learned a bit about it from the equations, and the known plaintext usually gives

enough information to deduce most of the rest).

The attack we described above is (a part of) the attack developed by famous mathematician and

cryptographer Alan Turing. During World War II the Government Code and Cipher School (now

called GCHQ) employed many pure mathematicians, including Turing, to work on breaking the

Enigma cipher (secretly based at Bletchley Park in Milton Keynes). Such a large scale effort was

unheard of up to this point in history, and would provide solid evidence that collaborative efforts

could prove much more powerful than working in isolation.

Recall that the attack still required us to do some amount of brute force (the 2 ·1054560 = 2109120

possibilities for the initial rotor settings and the choice of reflector). By today’s standards, this

brute force would be possible in seconds...but this was highly non-trivial back in the 1940’s. One

of Turing’s crowning achievements was to design and build a spectacular machine, the Turing

Bombe, that was able to perform the attack described above.

24

3 Linear Feedback Shift Registers

We saw earlier that the One Time Pad is a provably secure cipher. However, it suffered from some

disadvantages in that we needed to generate a long key uniformly at random. This is not only hard

to do, but might be quite time consuming.

We wonder whether there is a way to compromise a little and generate a pseudorandom key, i.e.

a key that is random enough for you to use as a One Time Pad and get away with it. We also

wonder whether we can do this without too much effort...maybe requiring only a small input to

generate our long random output.

Linear Feedback Shift Registers (LFSR’s) give a simple way to do both of these. In this course,

we’ll only consider LFSR’s over F2, the finite field of order 2, for simplicity (there are much more

general notions of LFSR over other fields/rings, e.g. Fp for other primes p and Z/NZ for other

integers N ≥ 2).

3.1 The basics

Definition 3.1. Let a, b ∈ F2. Then the XOR of a and b, denoted a⊕ b is given by the following

table:

a\b 0 1

0 0 1

1 1 0

The term XOR stands for Exclusive OR, since this is almost the logical operation OR (but it

excludes BOTH). Note that this is simply addition mod 2, but we adopt the notation since it’s a

more natural notation from the point of view of Computer Science.

Definition 3.2. A Linear Feedback Shift Register of length n ≥ 1 with taps b = (b0, b1, ..., bn−1) ∈
Fn
2 is a device that stores a state ai ∈ Fn

2 at each (integer) time step i ≥ 0 and updates over time

as follows:

ai = (ai, ai+1, ..., ai+n−1) 7−→ ai+1 = (ai+1, ai+2, ..., ai+n),

where ai+n = b0ai ⊕ b1ai+1 ⊕ ...⊕ bn−1ai+n−1.

The starting string a0 = (a0, a1, ..., an−1) ∈ Fn
2 is called the initial fill.

In other words, at each time step the current state shifts to the left, removing the leftmost entry

and updating the rightmost entry with a new bit (depending recursively on the old state).

We’ll often draw diagrams to illustrate LFSR’s as follows:

Example 3.3. The LFSR of length n = 6 with taps b = (b0, b1, b2, b3, b4, b5) = (1, 0, 1, 1, 0, 0) has

update rule:

ai+6 = ai ⊕ ai+2 ⊕ ai+3.

25

a0 a1 a2 a3 a4 a5

⊕⊕

If the initial fill is a0 = (a0, a1, a2, a3, a4, a5) = (0, 1, 1, 0, 1, 0) then over time the LFSR will store

the states:

a0 0 1 1 0 1 0

a1 1 1 0 1 0 1

a2 1 0 1 0 1 0

a3 0 1 0 1 0 0
...

...
...

...
...

...
...

If we run the LFSR forever and at each time step collect the left most bit (the one that gets thrown

away), then we recover an infinite string of bits:

s = a0a1a2...an...

which can be used as a One Time Pad key (if we convert our plaintext message into bits using a

standard method, such as ASCII (see Appendix 8.3)).

Example 3.4. The sequence of bits we get from the LFSR in the previous example is:

s = 0110101001000101111101...

The plaintext message HI is first encoded into ASCII as 0100100001001001.

We then encrypt using the string s as a One Time Pad (although adding mod 2):

mi 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

ai 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1

ci = mi ⊕ ai 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0

and receive the ciphertext c = 0010001000001100.

We could also use the bit string to encrypt pictures made up of black and white pixels (in the same

way that we saw in the One Time Pad chapter).

It’s now clear why LFSR’s are useful in Cryptography, we can generate long “random-looking”

One Time Pad keys by using small initial fills (which must be kept secret). This has the obvious

advantage that the key is easier to communicate with someone...they would only need to know the

initial fill and the update rule used to be able to generate s.

The only downside is that the key isn’t really random...it was generated using a recursion, so is

deterministic. LFSR’s can only generate pseudorandom strings, and some LFSR’s are better

than others in this regard!

26

Example 3.5. The randomness of the output string s of an LFSR can depend heavily on the choice

of initial fill.

Suppose we use the LFSR of length n = 6 from earlier, but now use the initial fill a0 = (0, 0, 0, 0, 0, 0).

This generates the string s = 0000000000000....

I think we can all agree that this is not a very random looking string. Not only that but it would be

a completely useless One Time Pad key (it performs the trivial encryption!).

Similarly, the initial fill a0 = (1, 1, 1, 1, 1, 1) generates the string s = 1111111111111..., which is

also a very predictable sequence and a bad One Time Pad key.

However, as we saw earlier the initial fill a0 = (0, 1, 1, 0, 1, 0) led to a more random looking string

s = 0110101001000101111101....

Example 3.6. The randomness of the output string s can also depend heavily on the choice of

taps.

Consider the LFSR of length 5 with taps b = (1, 0, 1, 0, 0). This gives update rule

ai+5 = ai ⊕ ai+2

and picture:

a0 a1 a2 a3 a4

⊕

It turns out that any choice of initial fill (except a0 = (0, 0, 0, 0, 0)) gives a random looking string

s. For example, the initial fill a0 = (0, 1, 1, 0, 1) gives:

s = 011011101010000100101...

However, the LFSR of length 5 with taps b = (1, 1, 0, 0, 0) gives update rule ai+5 = ai ⊕ ai+1 and

picture:

a0 a1 a2 a3 a4

⊕

For the same initial fill as above we get the output string

s = 011011011011011011011...

which looks very predictable!

27

So now we ask the natural question, is it possible to look at an LFSR and predict its quality?

How “pseudorandom” can its output strings be, based on the taps and the initial fill?

Clearly this is a vague question...how are we quantifying pseudorandomness? A good way to

measure this is by how often the string s repeats.

Definition 3.7. Consider an LFSR with initial fill a0. Then the period of a0 is the smallest

j ≥ 1 such that ai+j = ai for some i ≥ 0 (i.e. the smallest number of time steps needed to observe

a repeat between two states of the LFSR).

We denote this by Per(a0) = j.

Example 3.8. In the previous example we considered two LFSR’s of length 5 and the same initial

fill a0 = (0, 1, 1, 0, 1).

The second clearly satisfies Per(a0) ≤ 3, since ai+3 = ai for every i ≥ 0. Since we see visibly that

ai+1 ̸= ai and ai+2 ̸= ai for all i ≥ 0, we have that Per(a0) = 3.

For the first LFSR we note that the computation above didn’t reveal any repeats, so we must compute

further:

s = 011011101010000100101100111110001101...

A quick count reveals that a31 = a0. This implies that ai+31 = ai for every i ≥ 0 (Why?), and so

Per(a0) ≤ 31. We must have equality since if ai+j = ai for some 1 ≤ j ≤ 30 and i ≥ 0, then by

periodicity we would have this equality for some 0 ≤ i ≤ 30 (and visibly there are no repeats in the

states a0,a1, ...,a30).

Thus Per(a0) = 31. (Later, we’ll see why for this LFSR the period is always 31 for any non-zero

initial fill).

Ok, so now that we have a way of quantifying the pseudorandomness of an LFSR, two questions

remain:

• How do we compute Per(a0)? We’ll see a partial answer to this question soon!

• Does Per(a0) actually exist? Is it always the case that the output string of an LFSR always

repeats from some point onwards?

Proposition 3.9. An LFSR of length n satisfies Per(a0) ≤ 2n − 1 for every initial fill a0.

Proof. Suppose that a0 = (0, 0, ..., 0). Then Per(a0) = 1 ≤ 2n − 1 (see exercises).

Now suppose that a0 ̸= (0, 0, ..., 0). If at some time step we have ai = (0, 0, ..., 0) then the above

tells us that Per(a0) = 1 ≤ 2n − 1. So we may assume that ai ̸= (0, 0, ..., 0) for any i ≥ 0.

There are 2n−1 elements of Fn
2\{(0, 0, ..., 0)}. Now consider the states a0, a1, ..., a2n−1 of the LFSR.

There are 2n such states, and so by the Pigeonhole principle we must have that an = am for some

0 ≤ m < n ≤ 2n − 1. It follows that Per(a0) ≤ n−m ≤ 2n − 1.

28

3.2 The Main Theorem

We’ve seen that the quality of an LFSR as a tool for generating pseudorandom bit strings is

measured by the period of its initial fill. We know that this period satisfies Per(a0) ≤ 2n − 1, but

we would really like to know its exact value! We’ll see a partial answer to this question in this

subsection.

First we make the simple observation that if the first tap satisfies b0 = 0 (i.e. we never plan to use

the first bit stored in the register in any of our computations) then we are really just implementing

a smaller LFSR (i.e. a truncated one).

More precisely:

Lemma 3.10. If an LFSR of order n has taps b = (0, 0, ..., 0, bk, ..., bn−1) for some k ≥ 1 then the

output string corresponding to initial fill a0 = (a0, a1, ..., an−1) is

s = a0a1...ak−1s
′,

where s′ is the output string of the LFSR of order n−k with taps b′ = (bk, bk+1, ..., bn−1) and initial

fill a′
0 = (ak, ak+1, ..., an−1).

In particular Per(a0) = Per(a′
0).

Exercise 3.11. Prove this rigorously.

Because of the above fact, we may assume that our LFSR has first tap satisfying b0 = 1. The

importance of this will be clear soon.

So what will we do now? Well, we haven’t yet used the fact that the word linear appears in the

acronym LFSR. Consider what happens in the time step i 7→ i+ 1 of the LFSR:

ai = (ai, ai+1, ..., ai+n−1) 7−→ ai+1 = (ai+1, ai+2, ..., ai+n)

= (ai+1, ai+2, ..., b0ai ⊕ b1ai+1 ⊕ ...⊕ bn−1ai+n−1)

= (ai, ai+1, ..., ai+n−1)


0 0 0 ... 0 b0

1 0 0 ... 0 b1

0 1 0 ... 0 b2
...

...
...

. . .
...

...

0 0 0 ... 1 bn−1



= ai


0 0 0 ... 0 b0

1 0 0 ... 0 b1

0 1 0 ... 0 b2
...

...
...

. . .
...

...

0 0 0 ... 1 bn−1

 .

This is just matrix multiplication!

Definition 3.12. The companion matrix of an LFSR of order n and taps b = (b0, b1, ..., bn−1)

29

is the matrix:

Bb =


0 0 0 ... 0 b0

1 0 0 ... 0 b1

0 1 0 ... 0 b2
...

...
...

. . .
...

...

0 0 0 ... 1 bn−1

 ∈Mn(F2).

We immediately learn some things about the period of an LFSR.

Proposition 3.13. Consider an LFSR with taps b and initial fill a0. Suppose b0 = 1.

1. We have that Per(a0) | ord(Bb) (i.e. the smallest k ∈ N such that Bk
b = I).

2. We have that Per(a0) is the smallest j such that a0 = aj (i.e. to find the period it’s enough

to just look for the first repeat of the initial fill a0).

Proof. 1. Suppose that k = ord(Bb). Then B
k
b = I and so since:

ai+k = ai+k−1Bb = ai+k−2B
2
b = ... = aiB

k
b = aiI = ai,

we have that ai+k = ai for any i ≥ 0. It follows that Per(a0) ≤ k = ord(Bb).

To get divisibility, suppose that Per(a0) = j ≤ k. Choose i ≥ 0 such that ai+j = ai. Writing

k = qj + r for some q ≥ 1 and 0 ≤ r < j we see that:

ai = ai+j = ... = ai+qj.

But we also know that ai = ai+k, so that ai+qj = ai+k. If r ̸= 0 then this implies that

Per(a0) ≤ r < j, which is a contradiction. Thus r = 0, so that j|k.

2. Suppose that i ≥ 0 and j ≥ 1 are such that ai+j = ai. Then a0B
i+j
b = a0B

i
b. Note that

det(Bb) = b0 = 1, and so Bb ∈ GLn(F2) (i.e. is invertible mod 2). Cancelling Bi
b from both

sides of the equation gives a0B
j
b = a0, i.e. aj = a0. It follows that any repetition in the

sequence a0, a1, a2, ... descends to a repetition with the starting term a0, and so the period

is the smallest j such that aj = a0.

Example 3.14. Consider the LFSR of length n = 4 with taps b = (1, 0, 1, 1). Then:

Bb =


0 0 0 1

1 0 0 0

0 1 0 1

0 0 1 1

 .

By computing powers of Bb (remembering to work mod 2) we find that the lowest power giving the

identity matrix is B7
b = I. It follows that Per(a0) | ord(Bb) = 7, so that each initial fill a0 has

period Per(a0) = 1 or 7. This is much better than the result from earlier, which only told us that

Per(a0) ≤ 24 − 1 = 15.

30

Ok, so we now know quite a bit more about the period of an LFSR...but we still don’t know

exactly what it is!

It turns out that we can give an exact answer in one special case. Before we get to this we need to

define one more thing.

Definition 3.15. The characteristic polynomial of the LFSR of order n with taps b = (b0, b1, ..., bn−1)

is the polynomial:

cb(x) = xn + bn−1x
n−1 + ...+ b1x+ b0 ∈ F2[x].

The reason for the name is that cb(x) is also the characteristic polynomial of the matrix Bb, i.e.

det(Bb − xI) (check this!).

Theorem 3.16. Suppose that an LFSR with length n ≥ 1 and taps b has irreducible characteristic

polynomial cb(x). Let j ≥ 1 be the smallest positive integer j | 2n−1 such that cb(x) |xj+1 ∈ F2[x].

Then Per(a0) = j for every non-zero initial fill a0.

Proof. Consider the quotient ring

F2[x]/⟨cb(x)⟩ = {[a0 + a1x+ a2x
2 + ...+ an−1x

n−1] | ai ∈ F2}.

This is a vector space over F2 with (ordered) basis [1], [x], [x2], ..., [xn−1].

The multiplication by [x] map:

F2[x]/⟨cb(x)⟩ −→ F2[x]/⟨cb(x)⟩
[f(x)] 7−→ [xf(x)]

is a linear map which sends:

[1] 7−→ [x]

[x] 7−→ [x2]

...

[xn−1] 7−→ [xn] = [bn−1x
n−1 + ...+ b1x+ b0] = b0[1] + b1[x] + ...+ bn−1[x

n−1]

and so has matrix: 
0 0 0 ... 0 b0

1 0 0 ... 0 b1

0 1 0 ... 0 b2
...

...
...

. . .
...

...

0 0 0 ... 1 bn−1

 = Bb.

If we identify

a0 = (a0, a1, a2, ..., an−1) 7−→ [a0(x)] = [a0 + a1x+ a2x
2 + ...+ an−1x

n−1]

it follows that Per(a0) is the same as the period of the multiplication by [x] map with starting

value [a0(x)], i.e. the smallest j such that [xja0(x)] = [a0(x)].

31

If cb(x) is irreducible then it is a fact that F2[x]/⟨cb(c)⟩ is a field (i.e. every non-zero element is

invertible).

Using this fact, we see that if a0 is a non-zero initial fill then [a0(x)] is also non-zero, and so

cancelling tells us that [xja0(x)] = [a0(x)] if and only if [xj] = [1]. This means that Per(a0) = ord(x)

for any such initial fill. Since the group of non-zero elements of our field has size 2n−1, Lagrange’s

theorem tells us that ord(x) | 2n − 1.

Finally, we have that:

[xj] = [1] ⇔ [xj + 1] = [0] ⇔ xj + 1 ∈ ⟨cb(x)⟩ ⇔ cb(x) |xj + 1,

as desired.

Example 3.17. Consider an LFSR of length n = 4 with irreducible characteristic polynomial cb(x).

Then the above theorem tells us that every non-zero initial fill a0 has the same period, Per(a0) | 24−
1 = 15. We determine which by finding the smallest divisor j | 15 such that cb(x) |xj + 1.

Note that the divisors of 15 are 1, 3, 5, 15 and that we have the following factorisations into irre-

ducibles:

x3 + 1 = (x+ 1)(x2 + x+ 1)

x5 + 1 = (x+ 1)(x4 + x3 + x2 + x+ 1)

1. If b = (1, 1, 1, 1) then cb(x) = x4 + x3 + x2 + x+ 1 can be checked to be irreducible (it doesn’t

have a root mod 2 and doesn’t factor as (x2 + x+ 1)2). Since cb(x) |x5 + 1 but cb(x) ∤ x+ 1,

we have that Per(a0) = 5 for every non-zero initial fill a0.

For example, a0 = (1, 0, 0, 1) gives the string:

s = 10010100101001...

2. If b = (1, 1, 0, 0) then cb(x) = x4 + x + 1 can be checked to be irreducible (same reasoning).

Since cb(x) ∤ xj + 1 for any j ∈ {1, 3, 5}, we conclude that Per(a0) = 15 for any non-zero

initial fill a0 (i.e. all non-zero initial fills have maximal period).

For example, a0 = (1, 0, 0, 1) gives the string:

s = 1001101011110001001...

3. If b = (1, 0, 1, 0) then cb(x) = x4 + x2 + 1 = (x2 + x+ 1)2 is reducible and so we cannot use

the theorem in this case.

To demonstrate this, note that the initial fill a0 = (0, 1, 0, 1) gives the string:

01010101...

of period Per(a0) = 2 ∤ 15. Note also that the initial fill a0 = (0, 0, 1, 1) gives a string of

period 4 ̸= 2 (so that different initial fills can also have different periods!).

32

4 Public Key Cryptography: Asymmetric security in the

digital era

We saw earlier that the invention of computational machines provided a whole host of new capa-

bilities in Cryptography. Such machines could be used to both implement and break ciphers in

ways that we could only dream of before.

As time went on the performance of these machines rapidly increased. They also became more

readily available on a commercial scale (almost everyone has access to a computer now!). As such,

the Digital Era (that we currently live in) has brought with it new challenges:

• In a data-driven society it has become more important than ever to find ways of keeping

personal data secure (e.g. financial data, healthcare data). This is very much a different

viewpoint than the “cloak and dagger” style Cryptography that we’ve seen previously...in

the modern world anyone’s personal data can be a target!

• Cryptography has had to keep up with technological advances! The security of a scheme

now depends how how good the current capabilities are (e.g. can I simply invest a billion

pounds into building a good enough supercomputer to break someone’s security).

Over the last 50-60 years there have been many new and wonderful ciphers developed to cope

with the rise in demand (e.g. DES, 3DES, AES, Blowfish). These new schemes are much more

complicated to understand by humans, but are designed to be easily carried out by computers (e.g.

iterating intricate sequences of non-linear operations many times).

Alongside these developments, a revolution happened in Cryptography in the 1970’s:

• It was discovered that we could use ideas from Pure Mathematics to provide our security.

• We could also use ideas from Pure Mathematics to communicate without needing a

shared key.

The main idea is to shift focus. Up to this point our ciphers have been symmetric, i.e. knowing

the encryption key is equivalent to knowing the decryption key. Kerckhoffs’ principle told us that

the security depended entirely on keeping the key private.

The idea of Public key cryptography is to make the situation asymmetric, using both public

and private information to share keys or communicate.

4.1 Diffie-Hellman Key Exchange

So far, all ciphers we have seen have required you to communicate the key with your friend. If this

is intercepted in any way then the security is broken!

33

Question 4.1. Is there a way for two people to communicate a shared key without either having

to send it to the other?

The above sounds impossible at first glance...but we are about to see that it’s very much possible

using Modular Arithmetic.

Recall that for each prime p ≥ 1 we have the group of units mod p:

(Z/pZ)× = {1, 2, ..., p− 1}.

We’ll need the following fact, which we will state without proof.

Theorem 4.2. (Z/pZ)× is cyclic, i.e. there exists g ∈ (Z/pZ)× such that every h can be written

as h = gn for some n ∈ Z.

Definition 4.3. An element g ∈ (Z/pZ)× satisfying the above property is called a primitive root.

Example 4.4. Show that 2 ∈ (Z/7Z)× is not a primitive root. Show that 3 ∈ (Z/7Z)× is a

primitive root.

Solution. The powers of 2 ∈ (Z/7Z)× are:

2
1
= 2, 2

2
= 4, 2

3
= 1, 2

4
= 2, 2

5
= 4, 2

6
= 1, ...

and so 2 ∈ (Z/7Z)× is not a primitive root (e.g. we cannot write 3 = 2
n
).

The powers of 3 ∈ (Z/7Z)× are:

3
1
= 3, 3

2
= 2, 3

3
= 6, 3

4
= 4, 3

5
= 5, 3

6
= 1, ...

and so 3 ∈ (Z/7Z)× is a primitive root. ■

In general, a primitive element is easy to find. For example, heuristics say that 2 ∈ (Z/pZ)× is a

primitive root for roughly 37.4% of primes p (although it is still an open problem to prove that

this is true, it is a case of the Artin Primitive Root Conjecture).

We’re now ready to see the Diffie-Hellman method of generating shared keys.

Diffie-Hellman Key Exchange

1. Alice and Bob (publically) agree on a prime number p ≥ 1 and a primitive root g ∈ (Z/pZ)×.

2. Alice chooses a private key kA ∈ Z and sends cA = gkA to Bob.

3. Bob chooses a private key kB ∈ Z and sends cB = gkB to Alice.

4. Alice computes c = cB
kA and Bob computes c = cA

kB . This is their shared key.

The above protocol was invented by Whitfield Diffie and Martin Hellman in 1976. Before seeing

an example, we show that it does indeed work.

34

Proposition 4.5. The above protocol generates the same key for Alice and Bob.

Proof. This is a simple calculation:

cB
kA = (gkB)kA = gkBkA = gkAkB = (gkA)kB = ckBA .

Example 4.6. Alice and Bob decide to use Diffie-Hellman Key Exchange with p = 89 and g = 3 ∈
(Z/89Z)×. Alice decides to use private key kA = 10 and Bob decides to use private key kB = 25.

What messages do they send to each other and what is their shared key?

Solution. Alice sends the following to Bob:

cA ≡ gkA ≡ 310 ≡ (−8)2 · 9 ≡ 576 ≡ 42 mod 89.

Bob sends the following to Alice:

cB ≡ gkB ≡ 325 ≡ (−8)6 · 3 ≡ (−25)3 · 3 ≡ 625 · 14 ≡ 2 · 14 ≡ 28 mod 89.

The shared key is given by:

c ≡ ckBA ≡ 4225 ≡ 625 · 725 ≡ 204 · (−13)8 · 6 · 7 ≡ 442 · (−9)4 · 6 · 7 ≡ 67 · 64 · 6 · 7 ≡ 49 mod 89.

We check this as follows:

c ≡ ckAB ≡ 2810 ≡ 410 · 710 ≡ (−11)2 · (−2)2 · 16 · 49 ≡ 32 · 4 · 16 · 49 ≡ 39 · (−17) ≡ 49 mod 89.

■

Now that we understand how Diffie-Hellman Key Exchange works, we discuss what makes this

secure.

Eve the evesdropper is interested in getting their hands on the shared key, so that they can read

future messages. Eve knows the prime p ≥ 1 and the primitive root g ∈ (Z/pZ)×, and has

intercepted the quantities cA = gkA and cB = gkB . In order to calculate the shared key c, Eve has

to solve the following problem.

Diffie-Hellman Problem: Given gx ∈ (Z/pZ)× and gy ∈ (Z/pZ)×, compute gxy ∈ (Z/pZ)×.

Generically, it turns out that this problem is very difficult to solve if p is large, unless you know

either of the quantities x or y. In the case above both of these pieces of information were kept

private, and so Eve has to solve a hard problem to get access to the shared key!

This kind of philosophy revolutionised Cryptography in the 1970’s, and is still a driving theme in

today’s cryptographic protocols. Classically, security rested entirely on the problem of communi-

cating a shared key secretly. Now, security could be being based on attackers having to solve hard

problems to get their hands on the information. In other words, the fact that Maths is hard is

a good thing!

35

How might you go about solving the Diffie-Hellman Problem if you don’t know x or y? You might

try and recover x from gx (or similarly with y). If we were working in R you know exactly what

you would do...take logs!

Definition 4.7. Let p ≥ 1 be prime and g ∈ (Z/pZ)× be a primitive root. A discrete log of h

with respect to g is x ∈ Z such that h = gx. We write x = dlogg(h).

Example 4.8. Given that 2 ∈ (Z/11Z)× is a primitive root, compute dlog2(3) and dlog2(10)

Solution. We compute the powers of 2:

2
1
= 2, 2

2
= 4, 2

3
= 8, 2

4
= 5, 2

5
= 10,

2
6
= 9, 2

7
= 7, 2

8
= 3, 2

9
= 6, 2

10
= 1

It follows that dlog2(3) = 8 and dlog2(10) = 5. ■

Because the powers of g repeat every p − 1 by Fermat’s Little Theorem, the quantity dlogg(h) is

only really defined mod p− 1. But other than that it is unique.

Discrete Log Problem: Given a prime p ≥ 1, a primitive root g ∈ (Z/pZ)× and h ∈ (Z/pZ)×,
compute dlogg(h).

So, if we can solve the Discrete Log Problem efficiently, then we can solve the Diffie-Hellman

Problem efficiently. However, this is also a very difficult problem to solve if p is large. This is

because the powers of g ∈ (Z/pZ)× behave quite randomly, as opposed to powers of a real number

(where we have a notion of size).

For example, here is a scatter plot of the first 100 powers of the primitive root 6 ∈ (Z/17627Z)×:

The best attacks for the Discrete Log Problem use sophisticated tools from Algebraic Number

Theory. However, they only run in sub-exponential time relative to p and so are not efficient

enough to be practical for large prime p (which would be about 600-700 digits long in the real

world).

36

4.2 RSA

Diffie-Hellman Key Exchange provides a way of generating shared keys without needing to commu-

nicate them with each other. The idea was to each generate a private key and to only communicate

intermediate keys in public. Gaining access to the shared key required attackers to solve a tricky

mathematical problem (the Diffie-Hellman Problem or the Discrete Log Problem).

This was the world’s first method of asymmetric key exchange. Public knowledge of the

intermediate keys did not allow attackers to access either the private keys or the shared keys.

Soon after this, people wondered whether there could be an asymmetric cipher, i.e. one where

the public know how to encrypt messages intended for you, but such that decryption is only

feasible for the user.

The first such algorithm was announced to the public by Ron Rivest, Adi Shamir and Leonard

Adleman in 1977 (although later it was revealed that Clifford Cocks at GCHQ developed the same

idea internally in 1973). Their algorithm became known as RSA.

Before we see how RSA works, we need to further our understanding of Modular Arithmetic.

Definition 4.9. Let N ≥ 1. The group of units modulo N is

(Z/NZ)× = {a ∈ Z/NZ : gcd(a,N) = 1} ⊆ Z/NZ.

For example, if p is prime then (Z/pZ)× = {1, 2, ..., p− 1} is the group of units mod p from earlier.

If N = 10 then (Z/10Z)× = {1, 3, 7, 9}.

Definition 4.10. Let N ≥ 2. Then the Euler totient function is defined by ϕ(N) = |(Z/NZ)×|.

We’ll see more about this function later. For now we will just need the fact that ϕ(pq) = (p−1)(q−1)
if p ̸= q ≥ 1 are primes. We will also define ϕ(1) = 1 where necessary.

It turns out that there is a generalisation of Fermat’s Little Theorem for powers in (Z/NZ)×.

Theorem 4.11. (Fermat-Euler Theorem) Let N ≥ 1 and a ∈ Z be such that gcd(a,N) = 1. Then

aϕ(N) ≡ 1 mod N .

Proof. This is very similar to the proof of Fermat’s Little Theorem.

Since gcd(a,N) = 1, a ∈ Z/NZ is invertible, and so multiplication by a is a bijection on (Z/NZ)×.

It follows that: ∏
x∈(Z/NZ)×

ax =
∏

x∈(Z/NZ)×
x.

However, this product also equals aϕ(N)
∏

x∈(Z/NZ)× x, and so we have that

aϕ(N)
∏

x∈(Z/NZ)×
x =

∏
x∈(Z/NZ)×

x.

But each x ∈ (Z/NZ)× is invertible, so cancelling from both sides gives aϕ(N) = 1.

37

We’ll need to know one more thing before we can state the RSA encryption algorithm.

Lemma 4.12. Let N ≥ 1 and e ∈ Z. The map

fe : (Z/NZ)× −→ (Z/NZ)×

m 7→ me

has an inverse whenever gcd(e, ϕ(N)) = 1.

Proof. First, note that if gcd(e, ϕ(N)) = 1 then there exists d ∈ Z such that ed ≡ 1 mod ϕ(N).

Equivalently, ed = 1 + kϕ(N) for some k ∈ Z.

We claim that the inverse of fe is fd. This follows since:

fd(fe(m)) = fd(m
e) = med = m1+kϕ(N) = m · (mϕ(N))k = m · 1k = m,

by the Fermat-Euler Theorem. Similarly fe(fd(m)) = m.

RSA Encryption/Decryption

1. Alice secretly chooses two distinct primes p and q and computes N = pq. She chooses e ∈ Z
such that gcd(e, (p− 1)(q − 1)) = 1.

2. Alice publicly reveals her public key to be the pair (N, e).

3. Bob encrypts the message m ∈ (Z/NZ)× by computing c = fe(m) ∈ (Z/NZ)×. He sends

this to Alice.

4. To decrypt, Alice uses Euclid’s algorithm to compute her private key, d ∈ Z such that

ed ≡ 1 mod (p− 1)(q − 1). She then decrypts by computing m = fd(c).

Note that Alice now has a public key (N, e) and a private key (p, q, d). The public key allows

anyone to communicate with Alice, but the private key is kept secret for decryption purposes.

Proposition 4.13. The above protocol allows Alice to retrieve the message.

Proof. Since ϕ(N) = (p− 1)(q − 1), and gcd(e, (p− 1)(q − 1)) = 1, the map fe has an inverse. As

in the above proof, this is given by fd with d ∈ Z satisfying ed ≡ 1 mod (p− 1)(q − 1).

A simple computation now shows that

fd(c) = fd(fe(m)) = m,

so that Alice is able to recover the message.

Example 4.14. Alice uses RSA with public key (N, e) = (55, 3). Bob wishes to send the message

m = 12 ∈ (Z/NZ)× to Alice.

What is the ciphertext c ∈ (Z/55Z)× that Bob sends? Demonstrate that Alice is able to decrypt the

ciphertext.

38

Solution. Bob sends the ciphertext:

c ≡ m3 ≡ 123 ≡ 1728 ≡ 23 mod 55.

Alice knows that p = 5 and q = 11 and so computes (p− 1)(q − 1) = 40. She then finds that her

private key is d = 27, since 3 · 27 ≡ 1 mod 40 (in practice, Euclid’s algorithm would be used here).

She recovers the message by computing:

m ≡ cd ≡ 2327 ≡ 129 ≡ 9 · 8 · (−4)3 ≡ 17 · (−9) ≡ 12 mod 55.

■

So why is RSA secure? Well once again let’s put ourselves in Eve’s shoes. The only information

available is public key (N, e). If she intercepts a ciphertext c then she has to solve the following

problem.

RSA Problem: Given N = pq with p, q distinct primes, e ∈ Z such that gcd(e, ϕ(N)) = 1 and

c = me ∈ (Z/NZ)×, retrieve the message m ∈ (Z/NZ)×.

Generally, it turns out that this problem is very difficult. The only known way of recovering the

message m is to calculate the private key d (since fd is the inverse map of fe).

However, to calculate d you need to solve the congruence ed ≡ 1 mod (p − 1)(q − 1). Eve could

easily do this using Euclid’s Algorithm if she knew what the number (p− 1)(q− 1) was. But there

seems to be no way to compute this number without knowing what p and q are (as opposed to just

knowing their product, N = pq). In other words, Eve needs to solve the following problem.

Semiprime Factorisation Problem: Given a semiprime N = pq, recover the primes p and q.

If we can solve the Semiprime Factorisation Problem efficiently, then we can solve the RSA Problem

efficiently. However, generally this is also a very difficult problem to solve if p and q are large.

The best attacks for the Semiprime Factorisation Problem use sophisticated tools from Algebraic

Number Theory. However, they only run in sub-exponential time relative to N and so are

not efficient to be practical for large primes p, q (which would be about 300 − 400 digits long in

the real world).

4.3 El-Gamal

In the last two sections we have got a feel for the idea of public key cryptography. We can now

use Mathematics to provide security by forcing attackers to solve hard mathematical problems to

recover our messages.

We saw that for the Diffie-Hellman key exchange the security relied on the fact that the Discrete

Log Problem is hard to solve. Once this method has been used, both parties use the shared

key to encrypt/decrypt under some symmetric scheme. The question now is whether there exists

an asymmetric scheme allowing communication, whose security is based on the difficulty of the

Discrete Log Problem?

39

The answer is yes, the El-Gamal scheme! This scheme can be used with any finite group, and

the security relies on the generalised Discrete Log Problem for such groups. In this course, we’ll

only work with cyclic groups. Not much is lost by making this restriction.

First we need to know what discrete logs are in this setting. Let’s go back to the case of (Z/pZ)×.
A discrete log of h ∈ (Z/pZ)× only made sense once we fixed a primitive root g ∈ (Z/pZ)×, and
then it was defined to be any b ∈ Z such that a = gb. For arbitrary cyclic groups things are pretty

much identical.

Definition 4.15. Let G be a finite cyclic group. A discrete log of h ∈ G with respect to generator

g ∈ G is k ∈ Z such that h = gk. We write k = dlogg(h).

Remark 4.16. Be careful, when we write gk this means apply the group operation k times to g.

It doesn’t necessarily mean that it’s the product of g with itself k times (e.g. the group operation

might be addition).

Recall that the discrete log in (Z/pZ)× was only defined mod p− 1 (because gp−1 = 1). Something

very similar happens for cyclic groups.

Theorem 4.17. Let G be a finite cyclic group and h ∈ G. Then the set of discrete logs for h ∈ G
with respect to generator g ∈ G is a congruence class mod |G|.

Proof. If k ∈ Z is a discrete log for h with respect to g then so is k + |G|m for any m ∈ Z. This

follows from the fact that g|G| = e:

gk+|G|m = gkg|G|m = gk(g|G|)m = gkem = h.

Now suppose that k′ ∈ Z is another discrete log for h with respect to g, but that k′ is not in the

same class as k mod |G|. Without loss of generality we can assume that 1 ≤ k < k′ ≤ |G|. Then

h = gk = gk
′
, implying that gk

′−k = e. But this contradicts the fact that g is a primitive root,

since then g has order dividing k′ − k < |G|.

Example 4.18. Let G = (Z/pZ)×. Then the discrete log of h ∈ G with respect to generator g ∈ G
is by definition the discrete log that we studied earlier.

For example, if p = 11, g = 2 ∈ (Z/11Z)× and h = 6 ∈ (Z/11Z)× then dlogg(h) = dlog2(6) =

9 + 10Z, since 29 ≡ 2−1 ≡ 6 mod 11.

Example 4.19. Let G = Z/10Z under addition, g = 7 ∈ Z/10Z and h = 3 ∈ Z/10Z. Then

dlogg(h) = dlog7(3) = 9 + 10Z, since 7 · 9 = 63 ≡ 3 mod 10.

Example 4.20. Let G = µ10, the group of 10th roots of unity under multiplication. The discrete

log of h = e
6πi
10 with respect to g = e

14πi
10 is dlogg(h) = 9 + 10Z, since g9 = e

126πi
10 = e

6πi
10 = h.

You might not have realised this but all three of the above calculations were for the “same” group

(all cyclic of size 10), but the calculations feel completely different. This shows that even though

two cyclic groups may be isomorphic, discrete log calculations can both look and be completely

different.

40

This all might seem weird (at least to an algebraist)...since we usually only care about groups up

to isomorphism. However, in this case it really does matter how the group is presented to you

and what the group operation is. More on this later...

We are now able to see how discrete logs can be used in public key cryptography.

El-Gamal Encryption

1. Alice chooses a finite cyclic group G of size q and fixes a generator g ∈ G. She chooses a

secret value 1 ≤ k ≤ q and computes h = gk. Alice’s public key is (G, q, g, h) and her private

key is k.

2. Bob encrypts a message m ∈ G by choosing a secret value 1 ≤ s ≤ q and computing c1 = gs

and c2 = mhs (which uses public information). He sends c = (c1, c2) to Alice.

3. Alice decrypts by computing m = c2c
−k
1 (possible since she knows k).

Before seeing an example we first prove that Alice does indeed decrypt to the correct message m.

Lemma 4.21. The above protocol allows Alice to read the message.

Proof. This is a simple calculation:

c2c
−k
1 = (mhs)(gs)−k = (mgsk)(g−sk) = m(gskg−sk) = me = m.

Example 4.22. Let’s work with the multiplicative group G = (Z/31Z)×. Alice chooses generator

g = 3 ∈ G and private key k = 11 ∈ Z. Then Alice’s public key is (G, q, g, h) = (G, 30, 3, 13) since:

h = 311 ≡ (−4)4 · 3−1 ≡ 2 · 4 · 21 ≡ −80 ≡ 13 mod 31.

Bob wishes to send the message m = 7 ∈ G to Alice. He chooses secret value s = 4 and computes:

c1 = 34 ≡ 19 mod 31

c2 = 7 · 134 ≡ 7 · 142 ≡ 70 ≡ 8 mod 31.

and so sends (c1, c2) = (19, 8) to Alice.

Alice decrypts by computing:

m = 8 · 19−11 ≡ 8 · 1919 ≡ 8 · 19 · 209 ≡ 8 · 19 · 49 · 59 ≡ 8 · 19 · 23 ≡ 2 · 19 ≡ 7 mod 31.

Remark 4.23. A few things:

• Given an arbitrary finite group G we can easily construct cyclic subgroups by picking a

random g ∈ G and taking H = ⟨g⟩. In practice, this is usually a good source of cyclic groups

for use in El-Gamal.

41

• We viewed messages as elements of m ∈ G, but we didn’t explain how we were able to do

this. There are good methods of translating conventional messages into group elements, but

we won’t discuss these in this course.

• You might wonder why we include q in the public key. This is mainly since the size of G

might not be obvious from the way that G is presented to us.

We can now discuss the security of the El-Gamal scheme. Note that Eve knows G, q, g, h, c1 and c2,

and so to get the message m she needs to use this to compute m = c2c
−k
1 . However, Eve does not

know the value of k and so the only clear way for her to get this is to calculate dlogg(h) = k+ qZ.
But this is an instance of the Discrete Log Problem for G.

The Discrete Log Problem (for cyclic groups): Given a finite cyclic group G, a generator

g ∈ G and h ∈ G, compute dlogg(h).

So the security of El-Gamal depends entirely on how hard it is to solve the Discrete Log Problem for

the chosen group G. As we saw earlier though, groups that are abstractly the same (i.e. isomorphic)

can have Discrete Log Problems of varying difficulty.

Example 4.24. Let G = Z/NZ (under addition) and choose g ∈ G coprime with N . Then g

generates G.

Solving the Discrete Log Problem for this setup means being able to solve the congruence gx ≡
h mod N (since the group is additive). This congruence is easily solvable by multiplying both sides

by g−1 mod N (computable in polynomial time by Euclid’s algorithm).

For example, suppose N = 13 and g = 7. Then dlog7(9) = 5 + 13Z, since 7x ≡ 9 mod 13 has

solution x ≡ 9 · 7−1 ≡ 18 ≡ 5 mod 13. Surely enough 7 + 7 + 7 + 7 + 7 = 7 · 5 = 35 ≡ 9 mod 13.

Given the above example it should be clear that you should never use G = Z/NZ with the El-

Gamal scheme. The Discrete Log Problem is extremely simple to solve since we have Euclid’s

algorithm. In stark contrast, we saw that the Discrete Log Problem for (Z/pZ)× is believed to be

difficult (even though this group is isomorphic to the additive group Z/(p − 1)Z). Multiplicative

groups (Z/pZ)× have proved to be good choices for G in practice.

Another popular choice is G = E(Fp), the set of points on an elliptic curve mod p. The group

law here is much less easy to understand, since it’s defined geometrically. Elliptic Curve Cryp-

tography is used in many real world protocols (e.g. ECDSA, ECDH and Bitcoin).

4.4 Digital Signatures

We have seen now that public key cryptography gives us a great way to communicate securely in

an asymmetric way. But it can do much more than this!

One issue with symmetric schemes is that if Eve can find the shared key she can read all messages

between Alice and Bob. Also, Eve can then pretend to be Alice or Bob without immediate detection!

42

Most public key schemes allow the sender of the message to add a digital signature providing

authentication that they were indeed the sender of the message.

The idea is to make the signature hard for Eve to forge. Let’s think about how we can do this.

Bad Idea:

Alice thinks for a while and realises that she could probably convince Bob that she is the true

sender of a message m by providing something that only she could feasibly know, i.e. her private

key.

There are two obvious problems here. Firstly, Bob doesn’t know Alice’s private key, and so there

is no way to verify that this really is Alice’s secret information.

Secondly, no one except Alice should ever be given access to Alice’s private key. Otherwise all of

her messages can be read!

Good Idea:

Alice realises she needs to show Bob that the sender of the message knows her private key; without

telling him or anyone else what it is.

To sign she asks Bob to challenge her to decrypt an auxiliary message m0 using her private key

(something that only Alice can do). She then sends her message m (encrypted using Bob’s public

key) and sign with (m0,m1), where m1 is the decrypted message.

When Bob receives everything he can verify the signature by encrypting m1 using Alice’s public

key (which everyone knows) and checking that the output does indeed match m0. He concludes

that the sender is probably Alice, since no one else can feasibly decrypt a message using only

Alice’s public key.

Let us now look at two possible digital signature schemes based on the RSA and El-Gamal schemes.

RSA signature scheme

1. Alice chooses an RSA public and private key.

• Public key: (N, e) for some semiprime N and 1 ≤ e ≤ N coprime to ϕ(N)

• Private key: d ≡ e−1 mod (p− 1)(q − 1) where p, q are primes such that N = pq.

2. Bob chooses an auxiliary message m0 ∈ (Z/NZ)× and asks Alice to decrypt it using her

private key. When Alice sends Bob an encrypted message (using his public key) she signs

the message by sending the pair (m0,m1) = (m0, fd(m0)) (where d is her private key).

3. Bob can decrypt the encrypted message using his private key and verify Alice’s signature by

computing fe(m1) and checking it equals m0.

Example 4.25. Alice chooses primes p = 5 and q = 13, giving N = 65. She then chooses e = 11

(which is coprime with ϕ(N) = 4 · 12 = 48). Her public key is then (N, e) = (65, 11) and her

private key is

d ≡ e−1 ≡ 11−1 ≡ 35 mod 48.

43

Bob chooses secret primes p′ = 7 and q′ = 13, giving N ′ = 91. He then chooses e′ = 5 (which is

coprime with ϕ(N ′) = 6 · 12 = 72). His public key is then (N ′, e′) = (91, 5) and his private key

is

d′ ≡ e′−1 ≡ 5−1 ≡ 29 mod 72.

Now Alice wishes to send m = 6 ∈ (Z/N ′Z)× to Bob using his public key. She computes and sends,

c ≡ me′ ≡ 65 ≡ 63 · 62 ≡ 34 · 6 · 6 ≡ 22 · 6 ≡ 41 mod 91.

Bob asks Alice to sign her message by giving her auxiliary message m0 = 2 ∈ (Z/NZ)×. To sign

her message Alice uses her private key and computes,

m1 ≡ md
0 ≡ 235 ≡ (27)5 ≡ (−2)5 ≡ −32 ≡ 33 mod 65.

Bob receives the encrypted message c = 41 ∈ (Z/N ′Z)× and signature (m0,m1) = (2, 33). To

decrypt the message he uses his private key and computes,

m = cd
′
= 4129 ≡ (412)14 · 41 ≡ (432)7 · 41 ≡ (292)3 · 29 · 41

≡ 222 · 22 · 29 · 41 ≡ 29 · 22 · 29 · 41 ≡ 29 · 41 ≡ 6 mod 91.

To verify the signature he uses Alice’s public key to compute,

me
1 = 3311 ≡ (332)5 · 33 ≡ (492)2 · 49 · 33 ≡ (−4)2 · 49 · 33 ≡ 16 · 57 ≡ 2 mod 65.

This is the auxiliary message m0 and so the signature is verified.

Example 4.26. Alice chooses RSA public key (N, e) = (143, 13) for primes p = 11 and q = 13.

Alice’s private key is d = 37, since ϕ(N) = 10 · 12 = 120 and ed ≡ 13 · 37 = 481 ≡ 1 mod 120.

Bob chooses RSA public key (N ′, e′) = (55, 23) for primes p′ = 5 and q′ = 11.

Bob’s private key is d′ = 7, since ϕ(N) = 4 · 10 = 40 and e′d′ ≡ 23 · 7 ≡ 161 ≡ 1 mod 40.

Alice wishes to send m = 2 ∈ (Z/N ′Z)× to Bob using his public key. She sends c = 8 ∈ (Z/N ′Z)×

since:

c ≡ me′ ≡ 223 ≡ (26)4 · 2−1 ≡ 94 · 28 ≡ 262 · 28 ≡ 132 · 22 · 28 ≡ 4 · 4 · 28 ≡ 4 · 2 ≡ 8 mod 55.

Bob asks Alice to sign her message by choosing auxiliary message m0 = 17 ∈ (Z/NZ)×. She signs

(m0,m1) = (17, 30), since:

m1 ≡ md
0 ≡ 1737 ≡ (172)18 · 17 ≡ 318 · 17 ≡ (36)3 · 17 ≡ (14)3 · 17 ≡ 73 · 23 · 17
≡ 57 · 8 · 17 ≡ 57 · (−7) ≡ −399 ≡ 30 mod 143.

Bob receives the encrypted message c = 8 ∈ (Z/N ′Z)× and signature (m0,m1) = (17, 30). First he

uses his private key decrypt the message:

m ≡ cd
′ ≡ 87 ≡ (82)3 · 8 ≡ 93 · 8 ≡ 26 · 9 · 8 ≡ 26 · 17 ≡ 442 ≡ 2 mod 55.

44

He verifies Alice’s signature using her public key:

me
1 ≡ 3013 ≡ 213 · 313 · 1013 ≡ 313 · 10 ≡ (36)3 · 3 · 10 ≡ 142 · 3 · 10
≡ 53 · 3 · 10 ≡ 16 · 10 ≡ 160 ≡ 17 mod 143.

In practice, Alice can use the actual message m in order to sign. She clearly cannot take m0 = m

(otherwise everyone would see the message!) but can instead apply a hash function H to m and

take m0 = H(m). Hash functions are functions that produce a short, fixed length string from

variable length messages in such a way that is hard to invert, or forge.

While the RSA signature scheme is secure (if the parameters are chosen well), it might worry some

people that they are always using their private key to sign the message. Over time Eve will gain

information about this. For this reason Alice might use a second set of keys specifically designed

for signing.

We can also make signature schemes that complement the El-Gamal scheme, although these are a

little more complicated than RSA signatures. The signature scheme we will see only works for the

cyclic groups G = (Z/pZ)× with p prime (which have size q = p− 1).

El-Gamal signature scheme

1. Alice chooses an El-Gamal public and private key.

• Public key: (G, q, g, h) where G = (Z/pZ)× for some prime p and q = |G| = p − 1,

g ∈ G a primitive root and h = gk.

• Private key: 1 ≤ k ≤ p− 1.

2. Alice chooses an auxiliary message m0 ∈ G and secret value 1 ≤ s ≤ q that is coprime to q.

She computes

m1 = gs and m2 ≡ (m0 − km1)s
−1 mod q.

When she sends an encrypted message to Bob (using his public key) she signs by also sending

(m0,m1,m2).

3. Bob decrypts the message using his private key and verifies Alice’s signature by computing

hm1mm2
1 and checking that it equals gm0 .

Proposition 4.27. The verification step is theoretically correct.

Proof. We see this is true since,

hm1mm2
1 = (gk)m1(gs)m2 = gkm1+sm2 = gkm1+s(m0−km1)s−1

= gm0 .

Example 4.28. Alice chooses prime p = 17, primitive root g = 6 ∈ G = (Z/pZ)× and private

key k = 8. She computes,

h ≡ gk ≡ 68 ≡ (62)4 ≡ 24 ≡ 16 mod 17.

45

Alice’s public key is then (G, q, g, h) = (G, 16, 6, 16).

Bob chooses prime p′ = 23, primitive root g′ = 11 ∈ G′ = (Z/p′Z)× and private key k′ = 4. He

computes,

h′ ≡ g′k
′ ≡ 114 ≡ (121)2 ≡ 62 ≡ 13 mod 23.

Bob’s public key is then (G′, q′, g′, h′) = (G′, 22, 11, 13).

Alice wishes to send Bob the message m = 16 ∈ G′. To encrypt she uses Bob’s public key and a

secret value s1 = 3 to compute,

c1 ≡ g′s1 ≡ 113 ≡ 6 · 11 ≡ 20 mod 23

c2 ≡ mh′s1 ≡ 16 · 133 ≡ 16 · 8 · 13 ≡ 13 · 13 ≡ 8 mod 23.

To sign her message Alice choose auxiliary message m0 = 5 ∈ G and secret value s2 = 7. She

computes,

m1 ≡ gs2 ≡ 67 ≡ (62)3 · 6 ≡ 23 · 6 ≡ 8 · 6 ≡ 14 mod 17

m2 ≡ (m0 − km1)s
−1
2 ≡ (5− 8 · 14) · 7−1 ≡ (5− 0) · 7 ≡ 3 mod 16.

Bob receives the encrypted message c = (c1, c2) = (20, 8) and signature (m0,m1,m2) = (5, 14, 3),

To decrypt the message he uses his private key to compute:

m ≡ c2c
−k′

1 ≡ 8 · 20−4 ≡ 8 · 2018 ≡ 8 · (202)9 ≡ 8 · (92)4 · 9 ≡ 8 · (122)2 · 9
≡ 8 · 62 · 9 ≡ 8 · 13 · 9 ≡ 12 · 9 ≡ 16 mod 23.

To verify Alice’s signature Bob uses her public key to compute,

hm1mm2
1 ≡ 1614 · 143 ≡ (−1)14 · (−3)3 ≡ 1 · (−27) ≡ 7 mod 17

gm0 ≡ 65 ≡ (62)2 · 6 ≡ 22 · 6 ≡ 7 mod 17.

The two values are equal and so the signature is verified.

Example 4.29. Alice chooses a El-Gamal public key of the form (G, q, g, h) = (G, 22, 5, h) and

chooses private key k = 11. She calculates that h = 22, since:

h ≡ gk ≡ 511 ≡ (52)5 · 5 ≡ 25 · 5 ≡ 9 · 5 ≡ 22 mod 23.

Bob chooses El-Gamal public key of the form (G′, q′, g′, h′) = (G′, 16, 3, h′) and chooses private key

k′ = 7. He calculates that h′ = 11, since:

h′ ≡ g′k
′ ≡ 37 ≡ (33)2 · 3 ≡ 102 · 3 ≡ (−2) · 3 ≡ −6 ≡ 11 mod 17.

Alice wishes to send Bob message m = 13 ∈ G′ which she encrypts using his public key and secret

value s1 = 3. She sends (c1, c2) = (10, 14) to Bob, since:

c1 ≡ g′s1 ≡ 33 ≡ 10 mod 17

c2 ≡ mh′s1 ≡ 13 · 113 ≡ (−4) · (−6)3 ≡ 24 · (−6)2 ≡ 7 · 2 ≡ 14 mod 17.

46

Alice also signs the message by choosing auxiliary message m0 = 19 ∈ G and secret value s2 = 9.

She signs with (m0,m1,m2) = (19, 11, 18), since:

m1 ≡ gs2 ≡ 59 ≡ (52)4 · 5 ≡ 24 · 5 ≡ 16 · 5 ≡ 80 ≡ 11 mod 23

m2 ≡ (m0 − km1)s
−1
2 ≡ (19− 11 · 11) · 9−1 ≡ (−102) · 5 ≡ (−14) · 5 ≡ −70 ≡ 18 mod 22.

Bob receives the encrypted message (c1, c2) = (10, 14) and signature (m0,m1,m2) = (19, 11, 18).

To decrypt the message he uses his private key:

m ≡ c2c
−k′

1 ≡ 14·10−7 ≡ (−3)·127 ≡ (−3)·((−5)2)3·(−5) ≡ 15·83 ≡ (−2)·8·82 ≡ 1·64 ≡ 13 mod 17.

To verify Alice’s signature Bob uses her public key to compute,

hm1mm2
1 ≡ 2211 · 1118 ≡ (−1)11 · (112)9 ≡ (−1) · 69 ≡ (−1) · (62)4 · 6 ≡ (−1) · 134 · 6
≡ (−1) · 82 · 6 ≡ (−1) · (−5) · 6 ≡ 7 mod 23

gm0 ≡ 519 ≡ (52)9 · 5 ≡ 29 · 5 ≡ 25 · 24 · 5 ≡ 9 · (−7) · 5 ≡ 45 · (−7) ≡ (−1) · (−7) ≡ 7 mod 23.

The two values are equal and so the signature is verified.

We will now discuss why this signature scheme is secure. Suppose Eve wants to forge Alice’s

signature. She knows Alice’s public key (G, q, g, h) where h = gk for some secret k. In order to

forge the signature she needs to be able to find a, d, c ∈ Z such that hbbc = ga. Then she can

fraudulently sign a message to Bob by sending the triple (m0,m1,m2) = (a, b, c).

We can see that this is hard for Eve to do. If we take logs with respect to g we get

b · dlogg(h) + c · dlogg(b) ≡ a mod (p− 1).

The only known way for Eve to solve this is to pick values for a and b, compute dlogg(h) and

dlogg(b) and then solve for c. Even if Eve picks b well she still needs to find dlogg(h), which is a

generic instance of the Discrete Log Problem (as long as Alice chooses her key well). Thus only

Alice should feasibly be able to sign the messages that she sends.

47

5 Factorisation methods

We’ve just seen that the idea of a public key scheme is to base your security on the toughness

of a Mathematical problem. For the RSA scheme, this problem was the Semiprime Factorisation

Problem. This is believed to be a hard problem in that no efficient algorithm has ever been found to

solve it using a classical computer. However, Pure Mathematicians are never happy with “belief”,

we want to be sure that it’s a hard problem!

There are other reasons why we might want to understand in detail how hard a given problem is:

• If we’re basing our crypt on a “hard problem” that secretly turns out to be easy...the scheme

is rendered useless!

• Knowing how easy/hard a given instance of a problem is might inform us on how we should

choose our keys in reality. Capabilities are changing all the time and we have to keep up.

• Studying one hard problem might shed light on another hard problem. Maybe we can solve

one by only having to solving the other? Maybe we can start to understand the “ranking”

of problems, based on their difficulty?

• Studying hard problems might lead to new Mathematics that is applicable elsewhere.

In this section we will see a variety of simple attacks on the Semiprime Factorisation Problem.

Each performs relatively well for small semiprimes, but none perform well enough to tackle real

world key sizes.

5.1 Trial division

Trial division is the world’s oldest factoring algorithm. If we’re given N = pq with p ̸= q prime

and asked to factorise then we can do as follows:

Trial division: For each 2 ≤ i ≤ N − 1, check whether i | N . If so then i ∈ {p, q} is a non-trivial

prime factor.

This “try all of the possibilities” approach is guaranteed to work, but is extremely time consuming.

We can speed things up a little by only checking divisibility by the primes p ≤
√
N by the following

fact.

Lemma 5.1. If an integer M ≥ 2 is composite then p |M for some prime p ≤
√
M .

Proof. Since M ≥ 2 it has a prime factorisation M =
∏

pi|M peii . If every pi >
√
M then the RHS

is greater than
√
M

2
=M , giving a contradiction.

Example 5.2. If N = 143 then
√
143 ≈ 11.96. We see that the first few primes are such that

2, 3, 5, 7 ∤ 143. However, 11 | 143, giving factorisation N = 143 = 11 · 13.

Even with the speed up this method is very inefficient. The Prime Number Theorem tells us that

there are π(
√
N) ∼

√
N

log(
√
N)

primes p ≤
√
N . This is huge for large N .

48

5.2 Fermat’s method

Fermat’s method relies on the age old identity:

a2 − b2 = (a− b)(a+ b).

Idea: If we can write N = a2 − b2 for some a, b ∈ N then it’s almost guaranteed that a − b = p

and a+ b = q.

Lemma 5.3. Suppose N = pq ≥ 2 can be written as N = a2 − b2 with a, b ∈ N and (a, b) ̸=(
N+1
2
, N−1

2

)
. Then a± b ∈ {p, q}.

Proof. We use the difference of two squares to factor N as:

N = a2 − b2 = (a− b)(a+ b).

Since N ≥ 2 we have that a > b ≥ 1 and so a ± b are positive divisors of N whose product is N .

Since N = pq for two distinct primes p, q, it follows that {a− b, a+ b} = {1, N} or {p, q}.

The first case can only happen if a − b = 1 and a + b = N (since a − b < a + b). The solution to

this pair of equations is (a, b) =
(
N+1
2
, N−1

2

)
, and so any other pair (a, b) must correspond to the

non-trivial factors p, q.

How will we find such an a, b? We could instead consider the values N + b2 and wait until we see

a square. This gives us an algorithm:

Fermat’s method:

For each 1 ≤ b ≤ N−3
2

check whether N + b2 = a2 for some a ∈ N. If so then a± b ∈ {p, q}, so we

learn the two prime factors.

Example 5.4. If N = 143 then we compute that N + 12 = N + 1 = 144 = 122. It follows that:

N = 143 = 122 − 12 = (12− 1)(12 + 1) = 11 · 13,

revealing the factors 11 and 13.

This method works very well when the two primes are close together (regardless of their size).

The reason is that the solution to the equations a− b = p and a+ b = q is (a, b) =
(
p+q
2
, p−q

2

)
, and

p, q being close is equivalent to b being small (which we would then find early on in our search).

For this reason, the primes used to generate an RSA key must be both large and not close.

The problem with Fermat’s method is that there is only one value of b that leads to success. This

is no good...since it might take a long time to find it. A more general algorithm is as follows:

Fermat’s method mod N :

For each 1 ≤ a, b ≤ N − 1 check whether a2 ≡ b2 mod N and a ̸≡ ± b mod N . If so then

gcd(a± b,N) ∈ {p, q}.

This works because of the following fact.

49

Lemma 5.5. Suppose N = pq ≥ 2 and a2 ≡ b2 mod N with a ̸≡ ± b mod N . Then gcd(a± b,N) ∈
{p, q}.

Proof. The congruence implies that (a − b)(a + b) ≡ 0 mod N . Since a ̸≡ ±b mod N , neither

bracket is 0 mod N . But N = pq implies that the only other solutions are a − b ≡ 0 mod p and

a + b ≡ 0 mod q or visa versa with p, q swapped (in each case, neither is congruent to 0 mod N).

It follows that gcd(a± b,N) ∈ {p, q}.

Example 5.6. If N = 143 then we compute that 122 ≡ 12 mod 143 and 12 ̸≡ 1 mod 143. It follows

that gcd(12± 1, 143) give the non-trivial prime factors of N = 143. Indeed gcd(11, 143) = 11 and

gcd(13, 143) = 13.

This method has the advantage that there can be many (a, b) pairs that satisfy the congruence.

However, we’re no closer to finding them.

5.3 The Pollard Rho method for factoring

Pollard’s idea for finding a solution to the congruence a2 ≡ b2 mod N is to iterate the map

f(x) ≡ x2 + 1 mod N for some starting value x0 ∈ Z:

x0, x1 = f(x0) ≡ x20 + 1 mod N, x2 = f(x1) ≡ x21 + 1 mod N, ...

Since f(x) seemingly behaves randomly mod p, eventually you’ll stumble on a collision

f(xi) ≡ f(xj) mod p

for some i < j, giving x2i ≡ x2j mod p. Then as before gcd(xi ± xj, N) is likely to be p.

Baby Pollard Rho:

• Choose a starting value x0 ∈ Z.

• Iterate the function f(x) ≡ x2 + 1 mod N to get values x0, x1, x2,

• Check gcd(xi ± xj, N) as you go for non-trivial prime factors of N .

Example 5.7. If N = 143 and starting value x0 = 2 we get:

x1 = f(x0) ≡ 22 + 1 ≡ 5 mod 143.

Since gcd(x1 ± x0, 143) = gcd(7, 143) = gcd(3, 143) = 1 we must continue.

Now compute:

x2 = f(x1) ≡ 52 + 1 ≡ 26 mod 143.

Once again, we must continue since gcd(x2 ± x0, 143) = gcd(x2 ± x1, 143) = 1.

Now compute:

x3 = f(x2) ≡ 262 + 1 ≡ 105 mod 143.

We immediately check that gcd(x3 + x1, 143) = gcd(110, 143) = 11, revealing a non-trivial prime

factor of N .

50

The reason for the “rho” in the name of the algorithm is that once a collision f(xi) ≡ f(xj) mod p

is found, the values start to cycle mod p, making a rho shape. For example, in the above example

we found that p = 11 and we see that:

x21 + 1 ≡ x23 + 1 ≡ x25 + 1 ≡ ... ≡ 4 mod 11

x22 + 1 ≡ x24 + 1 ≡ x26 + 1 ≡ ... ≡ 6 mod 11.

x1 = x3 = x5 = · · · x2 = x4 = x6 = · · ·

x0

The Pollard Rho algorithm can be improved by instead doing the following:

Pollard Rho for factoring:

• Choose starting pair (x0, y0) with x0 = y0 ∈ Z.

• Iterate the functions (x, y) 7→ (f(x), f(f(y))) to get pairs (x0, y0), (x1, y1), (x2, y2),

• Check gcd(xi ± yi, N) as you go for non-trivial prime factors of N .

Example 5.8. If N = 143 and starting pair x0 = y0 = 2 then we get:

x1 ≡ x20 + 1 ≡ 22 + 1 ≡ 5 mod 143

y1 ≡ (y20 + 1)2 + 1 ≡ (22 + 1)2 + 1 ≡ 26 mod 143.

Since gcd(x1 ± y1, N) = gcd(31, 143) = gcd(−21, 143) = 1 we continue.

Next we get:

x2 ≡ x21 + 1 ≡ 52 + 1 ≡ 26 mod 143

y2 ≡ (y21 + 1)2 + 1 ≡ (262 + 1)2 + 1 ≡ 15 mod 143.

This time we find that gcd(x2− y2, N) = gcd(11, 143) = 11, giving a non-trivial prime factor of N .

This cuts down on the number of gcd calculations necessary and actually speeds up the algorithm

(although this is not obvious!).

51

5.4 Dixon’s method

Recall that we wish to find a non-trivial solution to a2 ≡ b2 mod N , since then gcd(a±b,N) ∈ {p, q}.
We’ve seen two ways to do this, but one requires a long brute force search and the other works

quicker...but only on average.

Dixon’s method uses Linear Algebra to solve the problem, providing ideas which form the basis

of some of the best factorisation algorithms that we know (e.g. the Quadratic Sieve and more

generally the Number Field Sieve).

The method begins with the simple fact that the product of squares is another square. Let’s see a

simple example of how this fact can be useful in providing solutions to the above congruence

Example 5.9. Suppose that we square three random integers a1, a2, a3 ∈ Z, reduce mod N and

factorise the results. Suppose also that we get very lucky and find that:

a21 ≡ b1 ≡ p1p2 mod N

a22 ≡ b2 ≡ p1p3 mod N

a23 ≡ b3 ≡ p2p3 mod N,

for three distinct primes p1, p2, p3 (not related to N in any way).

None of these congruences solves our problem directly...but together they do!

Multiplying the three congruences gives:

(a0a1a2)
2 ≡ b1b2b3 ≡ (p1p2)(p1p3)(p2p3) ≡ (p1p2p3)

2 mod N.

We have found a (hopefully non-trivial) solution (a, b) = (a0a1a2, p1p2p3) to the congruence a2 ≡
b2 mod N .

Dixon’s idea was to turn the above into a general algorithm. We could square a bunch of numbers

a1, a2, ..., ak, reduce mod N and factor, getting a bunch of congruences of the form:

a2m ≡
∏
i

p
ei,m
i mod N.

If we do enough work then we might be able to find some subset of congruences whose product

gives a solution to a2 ≡ b2 mod N . In other words, we might be able to find a product:(∏
m∈M

am

)2

≡
∏
m∈M

∏
i

p
ei,m
i ≡

∏
i

p
∑

m∈M ei,m
i mod N,

such that each of the powers
∑

m∈M em,i is even.

But how will be find such a subset of congruences that can be combined in this way? It was obvious

how to do this in the above example, but in general this is not so obvious! It turns out that we

can solve this issue by using Linear Algebra.

Suppose that we fix an ordering of the primes, p1, p2, ..., pn, ... (e.g. we’ll use the natural ordering by

size, 2, 3, 5, 7, ...). Then we can represent the prime factorisation of a rational number as a vector.

52

We define the following group under addition (see the exercises for the proof of this fact):⊕
n≥1

Z = {(x1, x2, x3, ...) |xi ∈ Z and xi = 0 for all but finitely many i}.

Lemma 5.10. The following map is a group homomorphism:

ψ : Q× −→
⊕
n≥1

Z

n =
∏
i

peii 7−→ (e1, e2, e3, ...).

The image of the subgroup (Q×)2 of squares is the subgroup
⊕

n≥1 2Z.

Proof. The function ψ is well defined since a rational number can only have finitely many primes

dividing the numerator/denominator (so that en = 0 for all but finitely many n, as required).

The first claim follows from the simple fact that if n =
∏

i p
ei
i ∈ Q× and m =

∏
i p

fi
i ∈ Q× then:

ψ(nm) = ϕ

(∏
i

pei+fi
i

)
= (e1+f1, e2+f2, e3+f3, ...) = (e1, e2, e3, ...)+(f1, f2, f3, ...) = ψ(n)+ψ(m).

The second claim follows from the fact that n2 =
∏

i p
2ei
i ∈ Q× is sent to ψ(n2) = ψ

(∏
i≥1 p

2ei
i

)
=

(2e1, 2e2, 2e3, ...) ∈
⊕

n≥1 2Z. Similarly, any element of this direct sum clearly corresponds to a

factorisation of some non-zero rational number.

We now know how to proceed, since we can instead work with the vectors:

em = ψ

(∏
i

p
ei,m
i

)
= (e1,m, e2,m, e3,m, ...) ∈

⊕
n≥1

Z.

Then by the lemma we have:∏
m∈M

∏
i

p
ei,m
i ∈ (Q×)2 ⇐⇒ ψ

(∏
m∈M

∏
i

p
ei,m
i

)
∈
⊕
n≥1

2Z ⇐⇒
∑
m∈M

em ∈
⊕
n≥1

2Z.

Finally, we note that: ∑
m∈M

em ∈
⊕
n≥1

2Z ⇐⇒
∑
m∈M

em = 0 ∈
⊕
n≥1

Z/2Z,

where

em = (e1,m, e2,m, e3,m, ...) ∈
⊕
n≥1

Z/2Z,

is the reduction mod 2.

The condition
∑

m∈M em = 0 should look familiar. If we write our vectors em as columns in a

matrix E with entries mod 2, then this condition corresponds to finding a null vector, i.e. a

vector v such that Ev = 0. This is a problem we know how to solve using Linear Algebra!

However, there’s one subtle issue that we are forgetting...there are infinitely many primes, so

that the matrix E is infinite!

Idea: Fix a finite set of primes and only allow congruences that feature these primes. Then the

matrix E will be finite.

53

Definition 5.11. Let B ≥ 2. An integer n ≥ 1 is B-smooth if every prime p |n satisfies p ≤ B.

Example 5.12. The integer n = 1024 is B-smooth for any B ≥ 2 since n = 210 only has p = 2

as a prime factor. However, n = 1025 is not 2-smooth since 5|1025 and 5 > 2 (this integer is

B-smooth if and only if B ≥ 41).

Since a B-smooth number n can only be divisible by primes p ≤ B, we have that ψ(n) is a finite

vector of fixed length π(B) = #{p prime | p ≤ B}.

We’re now ready to see Dixon’s method in generality!

Dixon’s method:

1. Choose a smoothness bound B ≥ 2 and list the primes p1, p2, ..., pπ(B) ≤ B.

2. Search for integers a1, a2, a3, ..., ak >
√
N such that:

a2m ≡ bm ≡
∏

1≤i≤π(B)

p
ei,m
i mod N,

i.e. with bm being B-smooth.

3. Form the matrix E whose columns are the first π(B) entries of the vectors em, i.e. the mod

2 matrix: 
e1,1 e1,2 e1,3 ... e1,k

e2,1 e2,2 e2,3 ... e2,k
...

...
...

. . .
...

eπ(B),1 eπ(B),2 eπ(B),3 ... eπ(B),k


4. Compute NullSpace(E) = {v ∈ Fk

2 |Ev = 0} using your favourite technique, e.g. Gaussian

Elimination (remembering to work mod 2).

5. Pick a non-zero element v ∈ NullSpace(E) (if this is not possible then continue the search

for more integers ai until this is possible).

6. Compute the product: ∏
m,vm=1

a2m ≡
∏

m,vm=1

bm mod N.

By construction the RHS is an integer square and so we find an integer solution

(a, b) =

 ∏
m,vm=1

am ,

√ ∏
m,vm=1

bm

 ,

to the congruence a2 ≡ b2 mod N .

7. Check whether gcd(a± b,N) ∈ {p, q}. If not then pick another non-zero null vector v to try,

or start again with another selection of integers ai.

54

Example 5.13. Let’s factor N = 143 again. Choose smoothness bound B = 7. Then:

172 ≡ 289 ≡ 3 mod 143

202 ≡ 400 ≡ 114 ≡ 2 · 3 · 19 mod 143

272 ≡ 729 ≡ 14 ≡ 2 · 7 mod 143

692 ≡ 4761 ≡ 42 ≡ 2 · 3 · 7 mod 143

The second congruence gives a RHS that is not 7-smooth and so we discard it. We now have that

(a1, a2, a3) = (17, 27, 69) and (b1, b2, b3) = (3, 14, 42).

The matrix E is: 
0 1 1

1 0 1

0 0 0

0 1 1

 ∼

1 0 1

0 1 1

0 0 0

0 0 0


so that NullSpace(E) = {(a, a, a) | a ∈ Z/2Z} = SpanZ/2Z((1, 1, 1)).

It follows that:

(a1a2a3)
2 ≡ b1b2b3 ≡ 3 · 14 · 42 ≡ (2 · 3 · 7)2 ≡ 422 mod 143.

We then find that gcd(a1a2a3 − 42, 143) = gcd(31629, 143) = 13, revealing one of the two prime

factors of N .

It might seem like we did a lot of work to factor a number that was small enough to be done by

simpler techniques...however, this method really does scale quite well to numbers with much larger

prime factors. Its more advanced sibling, the Number Field Sieve, uses very similar techniques

and is currently the best factorisation algorithm known for large numbers.

We won’t analyse the performance of this method in this course, but note that there is a balancing

act to be performed:

• As the smoothness bound B decreases then the chances of bm being B-smooth decreases,

so it takes longer to get enough congruences to work with, i.e. to find a matrix E that has

a non-zero null vector.

• As the smoothness bound B increases we receive more potentially useful congruences, but

the linear algebra step takes longer (since the matrices are getting larger).

Choosing an ideal smoothness bound is an art, but enough study has been done on this problem

and we know the optimal choice of B. Unfortunately (or fortunately, depending on how you look

at it) the run time of this algorithm is still way too high to break real world RSA keys.

55

6 Discrete Log methods

As mentioned previously, the security of the RSA scheme relies on the toughness of the Semiprime

Factorisation Problem. We saw some of the basic attacks on this problem and while some work

much better than others, none were competitive with real world public keys.

We now turn to Diffie-Hellman Key Exchange and the El-Gamal scheme. The security of these

depends on the Discrete Log Problem for a cyclic group G, the problem of determining k ∈ Z given

knowledge of a generator g ∈ G and the element h = gk (i.e. finding a representative of the coset

dlogg(h) = k + |G|Z). What are the possible attacks on this problem? We’ll take a look at some

of the basic ones in this section.

6.1 Brute force

For factoring we always had the option of simply trying all possibilities. That’s obviously still an

option here too!

Brute force: For each 1 ≤ k ≤ |G| check whether gk = h. If so then dlogg(h) = k + |G|Z.

Example 6.1. Let G = (Z/37Z)×, g = 5 and h = 18. Then:

k 1 2 3 4 5 6 7 ...

gk 5 25 14 33 17 11 18 ...

and so dlogg(h) = dlog5(18) = 7 + 36Z.

As with trial division, this method is clearly hopeless if the number of possibilities is large, i.e. if

|G| is large. Clearly we need a better method!

6.2 Baby-Step Giant-Step

The rough idea of the Baby-Step Giant-Step algorithm (due to Shanks) is to instead compute two

unrelated lists of powers of g and look for a collision, i.e. a repeated entry in both. Rearranging

then gives us a solution to the Discrete Log Problem.

How does it work? Well, since the discrete log in G is determined mod |G|, we know that there is

some 0 ≤ k ≤ |G| such that gk = h. Shanks’ idea was to try to split k up into two pieces.

We define m = ⌈
√
|G|⌉, the smallest integer greater than

√
|G|. Then we can write k = i + jm

for some 0 ≤ i, j ≤ m− 1, and so h = gk = gi+jm = gi · gjm. Rearranging gives hg−jm = gi, which

gives us a good idea of what we should take to be our two lists!

Baby-Step Giant-Step:

1. Calculate m = ⌈
√
|G|⌉ and compute the list gi for 0 ≤ i ≤ m− 1.

56

2. Compute x = g−m and compute the list hxj for 0 ≤ j ≤ m− 1.

3. Find the collision between the two lists, i.e. find 0 ≤ i, j ≤ m− 1 such that hxj = gi. Then

h = gi+jm, giving k = i+ jm as a representative for dlogg(h).

Example 6.2. Let’s take G = (Z/139Z)×, g = 2 and h = 112. Then m = ⌈
√
138⌉ = 12 and the

first list is as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11

gi 1 2 4 8 16 32 64 128 117 95 51 102

We now compute x ≡ g−m ≡ 2−12 ≡ 65−1 ≡ 77 mod 139 (using say Euclid’s Algorithm), and so

the second list begins as follows:

j 0 1 2 3 4 ...

hxj 112 6 45 129 64 ...

We notice the collision g6 = 64 = hx4, so that h = g6+4·12 = g54. This tells us that k = 54 is a

possible discrete log, i.e. dlogg(h) = 54 + 138Z.

We won’t go into much detail on the performance of this algorithm, but note that this algorithm is

much better than brute force. In terms of complexity, Baby-Step Giant-Step takes O(
√
|G|) time,

as opposed to the O(|G|) time that brute force took.

6.3 The Pollard Rho method for discrete logs

Recall that the idea behind the Pollard Rho method of factorisation was to iterate a random enough

function enough times to detect a collision mod p, hopefully then giving a non-trivial solution to

a2 ≡ b2 mod N .

It turns out that a similar method works for the Discrete Log Problem, but it’s a bit more com-

plicated. We’ll study the special case of G = (Z/pZ)× in this course, but there is a more general

version for arbitrary finite cyclic group G.

Suppose that g ∈ (Z/pZ)× is a generator and that h = gk is an instance of the Discrete Log

Problem. The idea is to search for a collision of the form gahb = gchd, since this implies that:

gahb = ga(gk)b = ga+bk = gc+dk = gc(gk)d = gchd.

Since the powers of g repeat every p− 1 we would then know that

a+ bk ≡ c+ dk mod p− 1⇔ (b− d)k ≡ (c− a) mod p− 1.

If we find that b− d is coprime with p− 1 then we could solve this congruence and conclude that

dlogg(h) = k+(p− 1)Z. (If not then cancelling t = gcd(b− d, p− 1) throughout determines k mod
p−1
t
, which might still lead to a small number of possibilities for k mod p− 1).

57

The question is now how we can find such a collision...

As earlier, brute force is always a solution. We could simply compute a table of gahb values for

increasing a, b values until we observe a collision. However, the power of the previous method was

to use a suitably random function to get to the collision.

Pollard’s idea was to navigate the list of values gahb in a much more random way. Then we might

expect to converge on a collision much faster.

There are three simple ways to modify x:

x 7→ gx (a, b) 7→ (a+ 1, b) mod p− 1

x 7→ x2 (a, b) 7→ (2a, 2b) mod p− 1

x 7→ hx (a, b) 7→ (a, b+ 1) mod p− 1

and so what we could do is start with an initial x0 = ga0hb0 ∈ G and choose a random sequence

of these three maps to do, looking out for a collision along the way. However, as we’ve discovered,

humans are bad at randomness...so we do something a bit more methodical.

Pollard suggested dividing the set {1, 2, ..., p − 1} into three equal-ish pieces and then assigning

one of the transformations to each (so that the output depends on the input). The easiest way to

do this is to simply split the interval into thirds and define a function as follows:

f(x) =


gx if 1 ≤ x < p

3

x2 if p
3
< x < 2p

3

hx if 2p
3
< x ≤ p− 1

This gives the following algorithm:

Pollard Rho for discrete logs:

1. Choose a starting pair (a0, b0) of integers 1 ≤ a0, b0 ≤ p− 1 and compute the starting input

x0 = ga0hb0 .

2. Iterate the function f(x) to get two lists, x0, x1, x2, ... and (a0, b0), (a1, b1), (a2, b2),

3. Check for a collision xi = xj as you go. If you find one then try to solve the congruence

(bi − bj)k ≡ (aj − ai) mod p − 1. If a unique solution exists then dlogg(h) = k + (p − 1)Z.
Otherwise, solve to find k mod p−1

t
where t = gcd(bi− bj, p− 1) and brute force k mod p− 1.

Example 6.3. Let’s take G = (Z/97Z)×, g = 5 and h = 69. Then the table is as follows (assuming

starting pair is (a0, b0) = (1, 1):

i 0 1 2 3 4 5 6 7 8 9

xi 54 6 30 53 93 15 75 34 89 30

ai 1 2 3 4 8 8 9 9 18 18

bi 1 2 2 2 4 5 5 6 12 13

We find the collision x2 = x9 and we now solve the congruence (b2 − b9)k ≡ (a9 − a2) mod 96, i.e.

−11k ≡ 15 mod 96. The solution is given by k ≡ 51 mod 96 and so dlogg(h) = 51 + 96Z.

58

6.4 Index Calculus

So far, we’ve seen a couple of simple ways to attack the Discrete Log Problem for arbitrary cyclic

groups. We might ask whether there is an algorithm that is analogous to Dixon’s algorithm for

factorisation. It turns out that there is, but we must once again restrict to the groups (Z/pZ)× for

p prime.

The reason for this is that in order to turn the factorisation problem into a Linear Algebra problem,

we needed to use prime factorisation to represent elements of Q× as vectors. For elements of

a general cyclic group G there is no obvious analogue of this concept (e.g. what is the prime

factorization of a matrix, a symmetry of a shape, a permutation?).

Index calculus is a method of using Linear Algebra to solve the Discrete Log Problem in (Z/pZ)×.

Here’s the rough idea. Suppose that G = (Z/pZ)× with p prime, and h = gk for some generator

g ∈ G and k ∈ Z. If we factorise h into prime powers then we get that:

h ≡
∏
i

peii mod p.

It follows that:

k ≡ dlogg(h) ≡ dlogg

(∏
i

peii

)
≡
∑
i

ei · dlogg(pi) mod p− 1.

If we knew the values dlogg(pi) for each pi | h then we would be done. Unfortunately, we haven’t

got much control over which primes can appear.

Idea: Let’s try and use smoothness again!

Choose a smoothness bound B ≥ 2. If we can modify h in some nice way to force a B-smooth

factorisation, then we might only need to know the values dlogg(pi) for each prime 1 ≤ i ≤ π(B).

The task of finding this fixed list of dlogs might then be manageable!

A good way to modify h is as follows. Suppose that we find s ∈ Z such that:

hgs ≡
∏

1≤i≤π(B)

peii mod p.

Then it follows that:

dlogg(hg
s) ≡ dlogg(h)+dlogg(g

s) ≡ k+s ≡ dlogg

 ∏
1≤i≤π(B)

peii

 ≡ ∑
1≤i≤π(B)

ei ·dlogg(pi) mod p−1.

Rearranging gives:

dlogg(h) ≡ k ≡

 ∑
1≤i≤π(B)

ei · dlogg(pi)

− s mod p− 1.

Great...but now we wonder how we’re ever going to find the values dlogg(pi) for 1 ≤ i ≤ π(B).

The best way is to use Linear Algebra!

59

Suppose that we compute a bunch of random powers gam and find that

gam ≡
∏

1≤i≤π(B)

p
em,i

i mod p,

is B-smooth. Then for each power we learn a congruence:

am ≡ dlogg

 ∏
1≤i≤π(B)

p
em,i

i

 ≡ ∑
1≤i≤π(B)

em,i · dlogg(pi) mod p− 1.

If we gather enough of these congruences then maybe we can solve and determine the values

dlogg(pi) for 1 ≤ i ≤ π(B).

Recall the following map from the Dixon’s method section:

ψ : Q× −→
⊕
n≥1

Z

n =
∏
i

peii 7−→ (e1, e2, e3, ...).

As in that section, we define the vector em = ψ
(∏

i p
em,i

i

)
= (em,1, em,2, em,3, ...) ∈

⊕
n≥1 Z. This

time we’ll denote by

em = (em,1, em,2, em,3, ...) ∈
⊕
n≥1

Z/(p− 1)Z

the mod p− 1 reduction of this vector.

The thing to notice is that the relation:

am ≡
∑

1≤i≤π(B)

em,i · dlogg(pi) mod p− 1,

can be written as:

em · d ≡ am mod p− 1,

where d = (dlogg(2), dlogg(3), dlogg(5), ...). The entire collection of relations gathered then trans-

lates to the matrix equation Ed ≡ a mod p− 1, where E is the mod p− 1 matrix:
e1,1 e1,2 e1,3 ... e1,k

e2,1 e2,2 e2,3 ... e2,k
...

...
...

. . .
...

eπ(B),1 eπ(B),2 eπ(B),3 ... eπ(B),k

 ,

and a = (a1, a2, a3, ..., ak) ∈ Zk.

If we can solve the above matrix equation then we recover the vector d and hence learn all of the

dlogs of small primes!

Let’s collect together our findings and turn it into an algorithm.

60

Index Calculus:

Step 1 (Find dlogs of small primes):

1. Choose a smoothness bound B ≥ 2 and list the primes p1, p2, ..., pπ(B) ≤ B.

2. Search for integers 1 ≤ a1, a2, ..., ak ≤ p− 1 such that:

gam ≡
∏

1≤i≤π(B)

p
em,i

i mod p,

i.e. with RHS being B-smooth.

3. Form the matrix E whose rows are the first π(B) entries of the vectors em, i.e. the mod p− 1

matrix: 
e1,1 e1,2 e1,3 ... e1,k

e2,1 e2,2 e2,3 ... e2,k
...

...
...

. . .
...

eπ(B),1 eπ(B),2 eπ(B),3 ... eπ(B),k

 .

4. Solve the matrix equation Ev ≡ a mod p − 1, where a = (a1, a2, ..., ak) ∈ Zk. If there’s no

solution then generate more values ai.

5. Then v ≡ d ≡ (dlogg(2), dlogg(3), ..., dlogg(pπ(B))) mod p− 1.

Step 2 (Relate dlog of h to dlogs of small primes):

1. Find s ∈ Z such that:

hgs ≡
∏

1≤i≤π(B)

peii mod p,

i.e. RHS is B-smooth.

2. Then compute that dlogg(h) ≡
(∑

1≤i≤π(B) ei · dlogg(pi)
)
− s mod p − 1, using the known

dlogs from Step 1.

61

Example 6.4. Let’s take G = (Z/83Z)×, g = 2, h = 31 and B = 7.

Step 1: We must find d = (dlogg(2), dlogg(3), dlogg(5), dlogg(7)).

We run through the powers of g mod p:

21 ≡ 2 mod 83

22 ≡ 22 mod 83

...

27 ≡ 128 ≡ 45 ≡ 32 · 5 mod 83

28 ≡ 7 mod 83

29 ≡ 14 ≡ 2 · 7 mod 83

...

212 ≡ 112 ≡ 29 mod 83

213 ≡ 2 · 29 mod 83

214 ≡ 22 · 29 mod 83

...

217 ≡ 15 ≡ 3 · 5 mod 83

...

Discarding the congruences such that the RHS is not 7-smooth, we try to solve the matrix equation

Ev ≡ a mod p− 1, where a = (1, 7, 8, 17) and

E =


1 0 0 0

0 2 1 0

0 0 0 1

0 1 1 0

 .

(Remember, this is a matrix with mod 82 entries...not mod 83).

We solve this system using row reduction as follows:
1 0 0 0 1

0 2 1 0 7

0 0 0 1 8

0 1 1 0 17

 ∼


1 0 0 0 1

0 1 0 0 −10
0 0 1 0 27

0 0 0 1 8

 .

We find that there is a unique solution v = (1,−10, 27, 8), so that d ≡ (1,−10, 27, 8) mod 82.

62

Step 2: We search for s ∈ Z such that hgs is 7-smooth:

31 · 2 ≡ 2 · 31 mod 83

31 · 22 ≡ 124 ≡ 41 mod 83

31 · 23 ≡ 2 · 41 mod 83

31 · 24 ≡ 81 ≡ 34 mod 83.

It now follows that:

dlogg(h) ≡ 4 · dlogg(3)− 4 ≡ 4 · (−10)− 4 ≡ −44 ≡ 38 mod 82,

so that dlogg(h) = 38 + 82Z, i.e. 31 ≡ 238 mod 83.

Exercise 6.5. Check that the dlog we computed is correct.

It might seem annoying that we did a lot of work in Step 1 to find the dlogs of all of the primes

2, 3, 5, 7...only to find later that we didn’t need all of these (we just needed dlogg(3) in the end).

However, to compute even a single dlog value we needed to use Linear Algebra...and to do this it

was actually helpful to consider a batch of dlog values at once!

The index calculus method for solving the Discrete Log Problem in (Z/pZ)× is very handy, but there

are much better generalisations that also use Linear Algebra, e.g. Quadratic Sieve and Number Field

Sieve. These methods are great and work fast for large problem sizes, but none of these methods

can run fast enough to break a generic real world Diffie-Hellman/El-Gamal scheme (which is again

either fortunate or unfortunate, however you view things).

63

7 Post Quantum Cryptography: The potential future of

security

So far, we have seen many public key schemes that rely on the toughness of mathematical problems

to guarantee security. For example, the RSA scheme relies on the toughness of the Semiprime

Factoring Problem and the El-Gamal scheme relies on the toughness of the Discrete Log Problem

for certain (presentations of) cyclic groups.

However, the world might currently be on the brink of a major advance in technology. Quantum

computers rely on the nature of quantum mechanics to compute. In particular their base unit is

not a bit (a 0 or a 1) but a qubit (a superposition α|0⟩+ β|1⟩ for (α, β) ∈ C2).

The fact that a qubit has much more freedom is partly what makes quantum computers much more

powerful than conventional computers. Another strong feature is that qubits can be entangled

using the tensor product, and so a quantum computer can potentially store information on all 2n

states of a system using only n qubits.

Due to the above, quantum computers are very good at performing Fourier transforms and so

can detect periodicity and solve such problems very quickly. In particular, Shor’s algorithm can

solve both the Semiprime Factoring Problem and the Discrete Log Problem in polynomial time

on a quantum computer. When quantum computers become good enough, schemes like RSA,

Diffie-Hellman and El-Gamal will become insecure.

There is currently a global fight for quantum supremacy! Thus, there is a scramble for quantum

secure algorithms, ones that rely on problems that a quantum computer is not known to be able

to solve easily. Certain lattice problems are thought to be such problems, but more on that later.

7.1 Knapsack schemes

Consider the following problem. Let S be a set of positive integers. If I choose a subset S ′ ⊆ S

then I can compute the sum of the elements of S ′. This is of course easy and fast to do, but

suppose I instead gave you only the sum and asked you what S ′ is. This turns out to be a tough

problem.

The Knapsack Problem: Given an increasing sequence of positive integers a1 < a2 < ... < an

and a sum of distinct elements s =
∑

1≤t≤k ait for some 1 ≤ ik < ik−1 < ... < i1 ≤ n, determine the

set S = {ai1 , ai2 , ..., aik}.

This is a very difficult problem to solve, even though it sounds easy. The basic reason for this

is that if |S| = n is a generic set of positive integers then there are 2n possible sums of distinct

elements. This is huge and infeasible to search through for large n.

Ok, so we’ve found a hard problem that could be used in cryptography. But remember, we need

to find an easy version of the problem for Bob to solve.

Thankfully there are choices of sequence that are easy to solve.

64

Definition 7.1. A sequence a1 < a2 < ... < an of positive integers is superincreasing if am+1 >∑
1≤t≤m at for any 1 ≤ m ≤ n− 1.

Example 7.2. The sequence an = 2n−1 is superincreasing since for any 1 ≤ m ≤ n we have:∑
1≤t≤m

at =
∑

1≤t≤m

2t−1 = 2m − 1 < 2m = am+1.

Similarly, the sequence an = bn−1 is superincreasing for any b ≥ 2.

The sequence 1, 4, 6, 20, 34, 70 is superincreasing, but the sequence 1, 4, 6, 20, 30, 70 is not (since

1 + 4 + 6 + 20 = 31 > 30).

Theorem 7.3. For superincreasing sequences, there is an algorithm that solves the Knapsack

Problem in polynomial time.

Proof. We use a greedy algorithm. Choose the biggest term ai1 in the sequence that is less than

or equal to s. We then choose the biggest term ai2 in the sequence that is less than or equal to

s− ai1 . Do the same for s− ai1 − ai2 . Keep going until reaching a term less than every element of

the sequence. Then we claim that s = ai1 + ai2 + ...+ aih solves the Knapsack Problem.

Suppose that the true solution is s = aj1 + aj2 + ... + ajk with jk < jk−1 < ... < j1. We prove

that ai1 = aj1 . It then follows that ai2 = aj2 , by considering the same Knapsack problem but with

s− aj1 . Continuing recursively it then follows that ait = ajt for all 1 ≤ t ≤ k (which forces h = k

too). Thus, the true solution would match the output of the algorithm.

We split into two cases:

• If ai1 < aj1 then the algorithm underestimates s, since:

s ≥ aj1 > aj1−1 + ...+ a1 ≥ ai1 + ...+ a1 ≥ ai1 + ai2 + ...+ aih .

• If ai1 > aj1 then the algorithm overestimates s, since

s ≤ aj1 + ...+ a1 < aj1+1 ≤ ai1 ≤ ai1 + ai2 + ...+ aih .

Thus ai1 = aj1 as expected.

Example 7.4. You already know an example of this algorithm. We showed above that an = 2n−1

is a superincreasing sequence, and the Knapsack Problem for this sequence is equivalent to writing

numbers in binary. The above algorithm is the usual way that you do this.

For example, take sequence 1, 2, 4, 8, 16, 32 and s = 22. The biggest element that is less than or

equal to s is 16. The biggest element less than or equal to s− 16 = 6 is 4. The biggest element less

than or equal to s − 16 − 4 = 2 is 2. Thus s = 2 + 4 + 16 solves this Knapsack Problem (i.e. the

number 23 in binary is 10110).

Example 7.5. For a random example, take sequence 3, 5, 9, 20, 41 and s = 53. This sequence is

superincreasing. The biggest element less than or equal to s is 41. The biggest element less than

or equal to s − 41 = 12 is 9. The biggest element less than or equal to s − 41 − 9 = 3 is 3. Thus

s = 3 + 9 + 41 solves this Knapsack Problem.

65

The above algorithm can fail for a non-superincreasing sequence, e.g. for sequence 2, 3, 4 and s = 5

the biggest element less than or equal to s is 4, but then s− 4 = 1 is smaller than everything in S.

We are almost ready to see the Knapsack scheme. We just have to figure out how Bob can turn

the easy version of the Knapsack problem into a hard version. He can start with a superincreasing

sequence, choose a modulus M , a positive integer w coprime with M , and compute the new

sequence wa1 < wa2 < ... < wan. Reducing this sequence mod M produces a random looking

sequence that is not likely to be superincreasing (it probably isn’t even increasing).

The Knapsack scheme:

1. Bob chooses a superincreasing sequence a1 < a2 < ... < an, a modulus M >
∑

1≤t≤n at and a

number w coprime with M . His public key is the sequence b1, b2, ..., bn, formed by reducing

the sequence wa1 < wa2 < ... < wan mod M . His private key is the pair (M,w).

2. To send a message m to Bob, Alice converts it to an n long bit string x = (x1, x2, ..., xn), in

her favourite way, and sends c =
∑

1≤t≤n xtbt.

3. Bob decrypts by computing c′ ≡ w−1c modM and solving the Knapsack Problem for the

superincreasing sequence a1 < a2 < ... < an and s = c′.

Lemma 7.6. The above protocol allows Bob to read the message.

Proof. Bob receives c =
∑

1≤t≤n xtbt and the claim is that x also solves the Knapsack Problem for

the sequence a1 < a2 < ... < an and s = c′. This is clear since:

c′ ≡ w−1c ≡ w−1
∑

1≤t≤n

xtbt ≡
∑

1≤t≤n

xt(w
−1bt) ≡

∑
1≤t≤n

xtat modM.

By the condition M >
∑

1≤t≤n xtat we have equality c′ =
∑

1≤t≤n xtat, proving our claim.

Example 7.7. Bob chooses the superincreasing sequence 1, 2, 4, 8, 16, 32. Using modulus M = 65

and w = 11 this becomes the sequence 11, 22, 44, 23, 46, 27.

Alice wishes to send the bit string 100110 to Bob. She sends c = 11 + 23 + 46 = 80 to Bob.

Bob computes w−1 ≡ 6 modM and computes c′ ≡ 6 · 80 ≡ 25 mod 65. Solving the Knapsack

Problem for the superincreasing sequence and s = 25 gives 100110 as expected.

We say a little more about the security of this scheme. Given a generic Knapsack Problem, for a

sequence b1, b2, ..., bn and a target s =
∑

1≤t≤n xtbt, consider the matrix:
2 0 0 ... b1

0 2 0 ... b2

0 0 2 ... b3
...

...
...

. . .
...

1 1 1 ... s

 .

Let r1, r2, ..., rn+1 denote the rows of this matrix.

66

Since s =
∑

1≤t≤n xtbt we note that the vector

v =

(∑
1≤t≤n

xtrt

)
− rn+1 = (2x1 − 1, 2x2 − 1, ..., 2xn − 1, 0)

is an integer linear combination of the vectors ri. The set of vectors:

L = {α1r1 + α2r2 + ...+ αn+1rn+1 |αi ∈ Z},

is an example of a structure called a lattice (more on these later!).

Notice that since each xi ∈ {0, 1}, the vector v has quite a short Euclidean length

||v|| =
√

(2x1 − 1)2 + (2x2 − 1)2 + ...+ (2xn − 1)2 =
√
n.

For reasons which we’ll see soon, this is likely to be the shortest non-zero vector in L, and if n is

large enough then this vector is very hard to find.

This problem is considered a very difficult problem to solve in large enough dimensions, even with

a quantum computer. However, there exist lattice reduction algorithms that can approximately

solve such problems for lattices of low enough rank.

Sadly, in order to use the Knapsack scheme with a reasonable key size we would like L to have

rank n + 1 > 300, but for these values of n lattice reduction algorithms are likely to produce the

shortest vector v that solves the corresponding Knapsack Problem.

While Knapsack schemes are known to be insecure for key sizes we might care about, they at least

hint that lattice problems might be of use in cryptography. Indeed, this is the case and there are a

great deal of lattice based schemes that have been proposed over the last few decades. The current

favourite is the NTRU scheme, which uses the toughness of the Shortest Vector Problem and

the Closest Vector Problem for lattices. We’ll see this soon.

7.2 A simple noisy scheme

The reason that quantum computers are so good at solving the Semiprime Factorisation Problem

and the Discrete Log Problem is the fact that both of these problems can be related to the problem

of finding the period of a certain map. The Quantum Fourier Transform is able to compute this

period in polynomial time on a quantum computer.

How can we design schemes that are not susceptible to such attacks? The best idea that we

currently have is to introduce random noise into the system, thus destroying the periodicity.

Let’s see an example of good/bad ways to do this.

Example 7.8. If I give you an integer n ∈ Z and promise you that it’s a multiple of s ∈ Z then

n = as for some a ∈ Z and you know how to find a (you compute n
s
= a). This is a periodic

problem...the multiples of s repeat every s.

Let’s add some noise! Suppose I give you an integer n ∈ Z and promise you that it’s close to a

multiple of s ∈ Z then n = as+ r for some small noise r ∈ Z. We would know how to find a and

r by calculating n
s
= a+ r

s
, rounding to get a and then rearranging to get r = n− as.

67

For example, if I give you n = 168 and promise you that it’s close to a multiple of s = 11 then you

would be able to calculate n
s
= 168

11
= 15 + 3

11
and know that it’s within r = 3 of 15 · 11.

Ok, so we added some noise to an integer problem and it was still easy...this is clearly a bad thing

to do!

Example 7.9. It turns out that a good thing to do is to consider this problem mod a prime p.

If I give you an integer n ∈ Z and promise you that it’s a multiple of s mod p, then n ≡ as mod p

for some a ∈ Z and you know how to find a (you solve the linear congruence using your favourite

technique). This is again a periodic problem...the multiples of s mod p repeat every s.

Let’s add some noise! Suppose I give you an integer n ∈ Z and promise you that it’s close to a

multiple of s mod p then n ≡ as + r mod p for some small noise r mod p. Well...this problem

is also easy, since I can take r = 0 and solve the congruence n ≡ as mod p (any two non-zero

elements of (Z/pZ)× are multiples of each other, since it’s a field!)

However, now suppose that I choose the multiple and the noise to both be small. There is then no

obvious way to solve this congruence, since the numbers as mod p can vary randomly between 0

and p− 1 and make a smaller random subset...unlike the problem in Z, there is no good notion of

size mod p that can be used to solve this problem!

For example, suppose that I give you n ≡ 168 mod 199 and promise you that it’s within 3 of a

small multiple of s ≡ 134 mod 199. The table of multiples of s mod p is quite erratic:

a 1 2 3 4 5 6 7 8 9 10 ...

as mod p 134 69 4 138 73 8 142 77 12 146 ...

It is not immediately obvious that a = 25 and r = −2, i.e. 25 · 134 ≡ 166 mod 199 is 2 away from

168 mod 199.

We’ve found what seems to be a hard problem! But for this to be useful to Cryptography we need

to find an easy version of the problem that Alice can use as her trapdoor.

Example 7.10. If instead I challenge you to find a small multiple of s ≡ 11 mod 199 that is within

3 of a multiple of n ≡ 168 mod 199, then we notice that this is the same problem as the integer

problem above. Since 168 = 15 · 11 + 3, we immediately find that a = 15 and r = 3 works.

This was an easy problem because s was itself small and so the list of multiples of s mod p takes a

while to reach size p, so the randomness takes a while to come into effect):

a 1 2 3 4 5 6 7 8 9 10 ... 15 ... 18 19 ...

as mod p 11 22 33 44 55 66 77 88 99 110 ... 165 ... 198 10 ...

Ok, so Alice should choose a small s to use as part of her private key (but not too small!). She then

has to somehow transform this to a random looking number mod p to use as part of her public

key. A good way to do this is to compute v ≡ st−1 mod p for some small-ish t (inverses of small

68

elements are unlikely to be small mod p). The following scheme makes precise what each instance

of the word “small” should be.

A simple noisy scheme:

1. Alice chooses a large prime p and coprime integers
√

p
4
< s <

√
p
2
and 1 < t <

√
p
2
. The pair

(s, t) is her private key.

2. Alice computes v ≡ st−1 mod p and releases (p, v) as her public key.

3. Bob encrypts a message m to Alice by converting it to a small integer noise value r <
√

p
4

and sending Alice the value e ≡ av+r mod p for some random choice of integer 1 < a <
√

p
2
.

4. Alice decrypts by computing b ≡ te mod p (with 0 < b < p), then computes r ≡ t−1b mod s.

Proposition 7.11. The above protocol allows Alice to retrieve the message.

Proof. Alice first computes:

b ≡ te ≡ t(av + r) ≡ t(ast−1 + r) ≡ as+ tr mod p.

Note that 0 < b < p and that:

0 < as+ tr <

√
p

2

√
p

2
+

√
p

2

√
p

4
=
p

2
+

p

2
√
2
< p.

Since these integers are congruent mod p and are both between 1 and p − 1, it must be that

b = as+ tr as integers.

Alice then finds that:

t−1b ≡ t−1(as+ tr) ≡ ast−1 + r ≡ r mod s

Example 7.12. Alice chooses p = 137 and computes that
√

p
4
≈ 5.85 and

√
p
2
≈ 8.28. She makes

the valid choice (s, t) = (7, 3) for her private key.

Since 3−1 ≡ 46 mod 137, she computes that

v ≡ st−1 ≡ 7 · 3−1 ≡ 48 mod 137

her public key is (p, v) = (137, 48).

Bob wishes to send a message m, which he has converted to the small noise value r = 2. He chooses

a = 5 and sends

e ≡ av + r ≡ 5 · 48 + 2 ≡ 105 mod 137

to Alice.

Alice decrypts by computing first that

b ≡ te ≡ 3 · 105 ≡ 41 mod 137,

and then learns that

r ≡ t−1b ≡ 5 · 41 ≡ 2 mod 7,

as expected (note that we needed a different modular inverse here, t−1 ≡ 5 mod 7).

69

What must Eve do to break this scheme? Well she only sees the values (p, v, e) and must solve

the seemingly hard problem we mentioned above, to find a solution to e ≡ av + r mod p where

v mod p is large and a, r are small-ish.

Alice is able to recover the message since her ability to compute b ≡ te mod p transforms the hard

problem into the easy one, to find a solution to b ≡ as + tr mod p where s mod p is small and

a, tr mod p are small-ish.

However, before we all celebrate the invention of our new seemingly quantum secure scheme...I

should point out that it’s actually highly insecure! We’ll see the full reason why in the next

subsection, but for now let’s translate it into another lattice problem.

The issue is that Eve can break the scheme if she can find any pair of coprime integers (S, T)

with 1 < S, T ≤
√

p
2
and v ≡ ST−1 mod p. Equivalently, we need to find such a solution to

Tv ≡ S mod p, so that Tv = S +Rp for some R ∈ Z.

It then follows that the vector x = (S, T) ∈ Z2 satisfies:

x = (S, T) = (Tv −Rp, T) = T (v, 1)−R(p, 0),

and so is an integer linear combination of the vectors r1 = (v, 1) and r2 = (p, 0) of Euclidean length

around p. Not only this, but x is a vector that has quite short Euclidean length in comparison:

||x|| =
√
S2 + T 2 ≤

√
p

2
+
p

2
=
√
p.

The set of vectors:

L = {α1r1 + α2r2 |α1, α2 ∈ Z},

is yet another example of a lattice, and we are seeking a vector in here that is short (of size around
√
p or less).

As we’ll see next lecture, finding short vectors in 2-dimensional lattices is very easy...so the scheme

can easily be broken!

7.3 Lattices and Gauss reduction

We’ve now seen two cryptographic schemes that have their security being based on the ability to

find small vectors in certain integer structures, which we called “lattices”. I think it’s time to

understand a bit more about what lattices are and what’s known about this problem!

Definition 7.13. Let v1, v2, ..., vn be a basis for Rn. The lattice spanned by this basis is the set:

L = {α1v1 + α2v2 + ...+ αnvn |αi ∈ Z},

i.e. the Z-span of the basis.

In low dimensions it’s possible to visualise a lattice as a regularly spaced set of points in Rn.

70

Example 7.14. The lattice L1 spanned by v1 = (1, 0) and v2 = (0, 1) is the square lattice (left).

The lattice L2 spanned by v1 = (1, 0) and v2 = (1
2
,
√
3
2
) is the hexagonal lattice (right).

Lattices appear throughout modern Mathematics, Physics, Chemistry and beyond. For example,

a lot of highly structured compounds/crystals have their atomic structure determined by points

on a lattice (e.g. diamond, graphene).

However, notice that in the above we could easily draw the picture since the vectors given were

quite simple. For an arbitrary basis it might be quite difficult to understand what the arrangement

of lattice points could look like.

Example 7.15. Consider the lattice L spanned by v1 = (121, 164) and v2 = (197, 267). If we

randomly add/subtract a couple of these vectors we get the following picture:

It’s not becoming clear what the entire picture of lattice points should look like. However, it turns

out that L is just the square lattice in disguise!

The above tells us that to understand a lattice well, we might want to find a “nice basis” for it,

i.e. one with small, widely spread vectors. The following problem gives us a start with that.

The Short Vector Problem: Given a lattice L ⊂ Rn, find the shortest non-zero vector v ∈ L.

This turns out to be an extremely difficult problem to solve if given a generic/random basis for a

lattice of high enough dimension. Such instances of the problem are widely believed to be quantum

secure.

However, for n = 2 the problem was completely solved in polynomial time a long time ago by

Gauss (for any basis of the lattice).

71

Suppose that we have a lattice L ⊂ R2 with basis v1,v2. Gauss’s idea was to emulate the Euclidean

algorithm and subtract a multiple of the smaller vector from the larger one. Doing this over and

over again should reduce the overall size of the basis vectors, until we win and find the “smallest”

basis (hence the smallest vector).

Ok, so let’s assume that ||v1|| ≤ ||v2|| (otherwise we can swap them). We want to replace v2 with

a vector of the form v2 − αv1 of smaller size.

Lemma 7.16. Let v1, v2 ∈ R2. The value of α ∈ R that minimises ||v2 − αv1|| is α = v1·v2
||v1||2 .

Proof. Consider the function:

f(α) = ||v2 − αv1||2 = (v2 − αv1) · (v2 − αv1) = ||v2||2 + α2||v1||2 − 2αv1 · v2.

The stationary points of f(α) satisfy f ′(α) = 0, i.e. 2(α||v1||2 − v1 · v2) = 0. The only solution is

α = v1·v2

||v1||2 .

Since f ′′(α) = 2||v1||2 > 0, this stationary point is a minimum.

We can almost solve the Short Vector Problem in 2-dimensions. Our problem is that in general

α = v1·v2

||v1||2 ∈ R, and so the vector v2 − αv1 is unlikely to be in our lattice L. Instead we have to

round and use the integer α = ⌊ v1·v2

||v1||2 ⌉ ∈ Z.

Gauss Reduction:

1. Arrange the given basis so that ||v1|| ≤ ||v2||.

2. Replace v2 with v2 − ⌊ v1·v2

||v1||2 ⌉v1 ∈ L.

3. Repeat these steps until no further progress is made.

Example 7.17. Consider the lattice L ⊂ R2 from before, with basis v1 = (121, 164) and v2 =

(197, 267). Note that these have large length.

We apply the Gauss reduction algorithm to produce a basis of smaller length as follows:

(197, 267)− 2(121, 164) = (−45,−61)
(121, 164) + 3(−45,−61) = (−14,−19)

(−45,−61)− 3(−14,−19) = (−3,−4)
(−14,−19)− 5(−3,−4) = (1, 1)

(−3,−4) + 4(1, 1) = (1, 0)

(1, 1)− (1, 0) = (0, 1)

The new basis for L is then w1 = (0, 1) and w2 = (1, 0), which are incredibly small (and in this

case both solve the Shortest Vector Problem).

Let’s prove that Gauss’s algorithm actually does give us a solution to the Shortest Vector Problem

in 2-dimensions:

72

Theorem 7.18. Let L ⊂ R2 be a lattice.

1. Gauss Reduction produces a basis w1,w2 for L satisfying ||w1|| ≤ ||w2|| and having angle

satisfying 2π
3
≤ θ ≤ 4π

3
(i.e. the vectors are close to orthogonal).

2. Further, w1 solves the Shortest Vector Problem for L.

Proof. 1. First note thatw1,w2 is a basis for L, since each step of the algorithm was an invertible

linear transformation with integer coefficients and integer inverse.

Since the algorithm terminates we can assume that ||w1|| ≤ ||w2|| and |w1·w2|
||w1||2 < 1

2
(otherwise

we could do another step of the algorithm).

Since |w1 ·w2| = ||w1|| · ||w2|| · |cos(θ)|, we find that:

|cos(θ)| ≤ ||w1||
2||w2||

≤ ||w2||
2||w2||

=
1

2

and the first claim follows.

2. Let w = a1w1 + a2w2 ∈ L\{0} be an arbitrary non-zero vector. Then:

||w||2 = ||a1w1 + a2w2||2

= a21||w1||2 + 2a1a2w1 ·w2 + a22||w2||2

≥ a21||w1||2 − 2|a1a2| · |w1 ·w2|+ a22||w2||2

≥ a21||w1||2 − |a1a2| · ||w1||2 + a22||w2||2

≥ (a21 − |a1a2|+ a22)||w1||2.

Note that t21− t1t2 + t22 =
3
4
t21 + (1

2
t1− t2)2 ≥ 0, with equality if and only if t1 = t2 = 0. Since

(a1, a2) ̸= (0, 0) and a21 − |a1a2| + a22 ∈ Z, we must have that ||w||2 ≥ ||w1||2, so that every

non-zero vector of L has size at most ||w1||. This proves the claim.

Let’s finish by returning to the “simple noisy scheme” from the last session. Recall that Alice’s

private key was (p, v), where p is prime and we needed to write v ≡ ST−1 mod p for some small

pair of integers (S, T).

We found that this problem was equivalent to solving the Short Vector Problem in the lattice L
spanned by v1 = (v, 1) and v2 = (p, 0) (since (S, T) is such a short vector). We can use Gauss

Reduction to do this!

Example 7.19. In the previous section, Alice had public key (p, v) = (137, 48). Let L be the lattice

with basis v1 = (48, 1) and v2 = (137, 0). We use Gauss Reduction and find that:

(137, 0)− 3(48, 1) = (−7,−3)
(48, 1) + 6(−7,−3) = (6,−17)

It follows that a smaller basis for L is w1 = (−7,−3) and w2 = (6,−17). The shortest vector in

L is then w1, which satisfies the requirements to break the scheme. Note that −w1 = (7, 3) ∈ L ...

this is precisely the private key that Alice used in the example!

73

While we have now broken this simple system, all is not lost. In the next section we’ll see that

this scheme motivates a better one, whose security relies on the difficulty of the Shortest Vector

Problem for higher dimensional lattices.

7.4 NTRU

We have just seen that the “simple noisy scheme” is incredibly easy to break, since the security

depends on a Short Vector Problem in a 2-dimensional lattice ... which is easily solved by Gauss

Reduction. However, the idea can be generalised to make a much better scheme that by today’s

standards is still believed to be (quantum) secure!

The idea is to work with higher dimensional objects, so that the underlying lattices are also

higher dimensional (making the Short Vector Problem harder to solve).

Definition 7.20. Let p, q,N be prime. We define the following quotient rings:

R = Z[x]/⟨xN − 1⟩, Rp = (Z/pZ)[x]/⟨xN − 1⟩, Rq = (Z/qZ)[x]/⟨xN − 1⟩.

The idea of NTRU is to try and emulate the “simple noisy scheme” but with R taking the place

of Z, Rp taking the place of Z/pZ and Rq taking the place of Z/sZ.

Note that there are obvious maps R −→ Rp and R −→ Rq given by reducing the coefficients mod

p and mod q respectively (i.e. [f(x)] 7−→
[
f(x)

]
).

Recall that in the simple scheme, Alice started by choosing coprime s, t ∈ Z that are small with

respect to the large prime p. We can do a similar thing in R, choosing polynomials of the form:

[s(x)] = [s0 + s1x+ s2x
2 + ...+ sN−1x

N−1] ∈ R
[t(x)] = [t0 + t1x+ t2x

2 + ...+ tN−1x
N−1] ∈ R

where all of the coefficients are small, i.e. si, ti ∈ {0, 1,−1}. Note that these polynomials are still

“small” when we reduce mod p or q.

A good way to generate such polynomials is to choose an integer d ≥ 1 and choose d of the

coefficients at random to be 1 and d of the coefficients at random to be −1 (then make the rest

of the coefficients 0). This is almost what we do in NTRU, but we instead let T (x) have d + 1

coefficients that are 1.

Alice then needed to compute v ≡ st−1 mod p in order to get something large to use in her public

key. Again, we can do this in Rp, calculating:[
v(x)

]
=
[
s(x)

] [
t(x)

]−1

∈ Rp.

The resulting polynomial v(x) is “large”, as it will have quite large random looking coefficients

mod p.

Alice now has a private key ([s(x)], [t(x)]) and a public key
(
N, p, q, d,

[
v(x)

])
.

Bob was able to send a message m to Alice by converting to a small integer noise value r and

sending Alice e ≡ av + r mod p, for some random small-ish integer a. He is still able to do this

74

in our new setting, he instead converts his message into a “small-ish” [r(x)] ∈ R with coefficients

satisfying − q
2
< ri <

q
2
and sends[

e(x)
]
≡
[
qa(x)v(x) + r(x)

]
∈ Rp.

Alice decrypted by computing b ≡ te mod p and then r ≡ t−1b mod s (where this inverse is mod

s). Alice should be able to do this in our new setup by computing:[
b(x)

]
=
[
t(x)e(x)

]
=
[
qa(x)s(x) + t(x)r(x)

]
∈ Rp

and then computing [
r(x)

]
=
[
t(x)

]−1 [
b(x)

]
∈ Rq.

Taking care of the “smalls” and the “larges” gives the following scheme:

NTRU:

1. Alice chooses N, p, q, d with N, p, q prime, p ̸= q,N and p > (6d+ 1)q.

2. Alice chooses polynomials [s(x)], [t(x)] ∈ R such that:

• Both classes are invertible in Rp and Rq.

• The polynomial s(x) has d coefficients that are 1, d coefficients that are −1 and the rest

of the coefficients 0.

• The polynomial t(x) has d+ 1 coefficients that are 1, d coefficients that are −1 and the

rest of the coefficients 0.

Her private key is the pair ([s(x)], [t(x)]) ∈ R2 and her public key is
(
N, p, q, d,

[
v(x)

])
, with[

v(x)
]
=
[
s(x)

] [
t(x)

]−1

∈ Rp.

3. Bob encrypts a message m by converting to [r(x)] ∈ R with coefficients − q
2
< ri <

q
2
. He

then sends
[
e(x)

]
=
[
qa(x)v(x) + r(x)

]
∈ Rp, for some random choice of a(x) ∈ R (also

having d coefficients that are 1, d coefficients that are −1 and the rest 0).

4. Alice decrypts by first computing
[
b(x)

]
=
[
t(x)e(x)

]
∈ Rp and then by computing

[
r(x)

]
=[

t(x)
]−1 [

b(x)
]
∈ Rq.

We won’t prove that the decryption algorithm works in this course, since it is a similar calculation

to the one we did for the “simple noisy scheme” (but more tedious). The key point is that in the

previous scheme, the private key parameters were chosen to be small enough so that Alice found

the equality of integers b = as+ tr (which then gives the correct value mod s necessary to retrieve

r). In NTRU, the parameters have once again been chosen so that we get an equality over the

integer structure:

[b(x)] = [a(x)s(x) + t(x)r(x)] ∈ R,

which lets Alice recover the correct polynomial [r(x)] when reducing mod q.

75

Example 7.21. Alice chooses parameters (N, p, q, d) = (7, 41, 3, 2). Note that N, p, q are prime,

p ̸= q,N and p > (6d+ 1)q (so this is a valid choice).

She chooses her private key to be ([s(x)], [t(x)]) ∈ R, where:

s(x) = x6 + x4 − x2 − x t(x) = x6 − x4 + x3 + x2 − 1.

(Note that these have the correct numbers of coefficients that are ±1).

Her public key is then
(
N, p, q, d,

[
v(x)

])
=
(
7, 41, 3, 2,

[
20x6 + 40x5 + 2x4 + 38x3 + 8x2 + 26x+ 30

])
,

since: [
v(x)

]
=
[
s(x)

] [
t(x)

]−1

=
[
20x6 + 40x5 + 2x4 + 38x3 + 8x2 + 26x+ 30

]
∈ Rp.

Bob wishes to send a message m which he has converted to:

[r(x)] = [−x5 + x3 + x2 − x+ 1] ∈ R.

He chooses the random element

[a(x)] = [x6 − x5 + x− 1] ∈ R

and sends[
e(x)

]
=
[
qa(x)v(x) + r(x)

]
=
[
31x6 + 19x5 + 4x4 + 2x3 + 40x2 + 3x+ 25

]
∈ Rp.

Alice decrypts by computing[
b(x)

]
=
[
t(x)e(x)

]
=
[
x6 + 10x5 − 8x4 − x3 − x2 + x− 1

]
∈ Rp.

Then [
r(x)

]
=
[
−x5 + x3 + x2 − x+ 1

]
∈ Rq,

giving r(x) = −x5 + x3 + x2 − x+ 1 as expected.

So why is NTRU believed to be secure? Well just as before, it’s enough for Eve to find two “small”

elements
[
S(x)

]
,
[
T (x)

]
∈ Rp such that

[
v(x)

]
=
[
S(x)

] [
T (x)

]−1

∈ Rp. Equivalently, she needs

to solve
[
T (x)v(x)

]
=
[
S(x)

]
∈ Rp, so that [T (x)v(x)] = [S(x)+pR(x)] ∈ R, for some [R(x)] ∈ R.

It then follows that the vector X(x) = ([S(x)], [T (x)]) ∈ R2 satisfies:

X(x) = ([S(x)], [T (x)]) = ([T (x)v(x)− pR(x)], [T (x)]) = [T (x)]([v(x)], [1])− [R(x)]([p], [0])

if we allow ourselves to treat elements of R as scalars (i.e. we consider R2 as an R-module).

In other words, we find that ([S(x)], [T (x)]) is a “short vector” in the “lattice” that is the R-span

of the vectors v1 = ([v(x)], [1]) and v2 = ([p], [0]).

If we write everything in integer coordinates, using the Z-basis [1], [x], [x2], ..., [xN−1] for R, then

we would find that the vector

X(x) = ([S(x)], [T (x)]) 7−→ (s0, s1, s2, ..., sN−1, t0, t1, t2, ..., tN−1) ∈ Z2N

76

is a short vector in the lattice L with basis matrix:

v0 v1 v2 ... vN−1 1 0 0 ... 0

vN−1 v0 v1 ... vN−2 0 1 0 ... 0

vN−2 vN−1 v0 ... vN−3 0 0 1 ... 0
...

...
...

. . .
...

...
...

...
. . .

...

v1 v2 v3 ... v0 0 0 0 ... 1

p 0 0 ... 0 0 0 0 ... 0

0 p 0 ... 0 0 0 0 ... 0

0 0 p ... 0 0 0 0 ... 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 ... p 0 0 0 ... 0



.

This is a lattice of dimension 2N , and since N is large we currently have no hope of attacking

the Short Vector Problem for this lattice. Even the best known methods for reducing a lattice

basis, e.g. the LLL algorithm, fail to give us the short vector we seek (it can only give us an

approximate short vector, which in this case happens to be one of the vectors (0, 0, ..., 0, p, 0, ..., 0)

that is too long to be the shortest one).

And that’s the end! Throughout this course we’ve seen a wide variety of encryption/signature

schemes, some historical and some modern (literally still in use). This list was by no means com-

plete...there are way more schemes to read about, and further topics in Cryptography. Hopefully

you found the journey interesting!

77

8 Appendix

8.1 Relative frequency table for the English language

The following table (taken from https://en.wikipedia.org/wiki/Letter_frequency) gives rel-

ative frequencies for appearance of letters in the English language (from most frequent to least).

Letter Relative Frequency (%)

E 12.7

T 9.1

A 8.2

O 7.5

I 7.0

N 6.7

S 6.3

H 6.1

R 6.0

D 4.3

L 4.0

U 2.8

C 2.8

M 2.4

W 2.4

F 2.2

G 2.0

Y 2.0

P 1.9

B 1.5

V 0.98

K 0.77

J 0.15

X 0.15

Q 0.095

Z 0.074

Most common digraphs: TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI HI AS TO

Most common double letters: LL EE SS OO TT FF RR NN PP CC

78

8.2 Mutual Index of Coincidence table for Example 1.31

i j 0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 0.025 0.034 0.045 0.049 0.025 0.032 0.037 0.042 0.049 0.031 0.032 0.037 0.043

1 3 0.023 0.067 0.055 0.022 0.034 0.049 0.036 0.040 0.040 0.046 0.025 0.031 0.046

1 4 0.032 0.041 0.027 0.040 0.045 0.037 0.045 0.028 0.049 0.042 0.042 0.030 0.039

1 5 0.043 0.021 0.031 0.052 0.027 0.049 0.037 0.050 0.033 0.033 0.035 0.044 0.030

1 6 0.037 0.036 0.030 0.037 0.037 0.055 0.046 0.038 0.035 0.031 0.032 0.037 0.032

1 7 0.054 0.063 0.034 0.030 0.034 0.040 0.035 0.032 0.042 0.025 0.019 0.061 0.054

2 3 0.041 0.029 0.036 0.041 0.045 0.038 0.060 0.031 0.020 0.045 0.056 0.029 0.030

2 4 0.028 0.043 0.042 0.032 0.032 0.047 0.035 0.048 0.037 0.040 0.028 0.051 0.037

2 5 0.047 0.037 0.032 0.044 0.059 0.029 0.017 0.044 0.060 0.034 0.037 0.046 0.039

2 6 0.033 0.035 0.052 0.040 0.032 0.031 0.031 0.029 0.055 0.052 0.043 0.028 0.023

2 7 0.038 0.037 0.035 0.046 0.046 0.054 0.037 0.018 0.029 0.052 0.041 0.026 0.037

3 4 0.029 0.039 0.033 0.048 0.044 0.043 0.030 0.051 0.033 0.034 0.034 0.040 0.038

3 5 0.021 0.041 0.041 0.037 0.051 0.035 0.036 0.038 0.025 0.043 0.034 0.039 0.036

3 6 0.037 0.034 0.042 0.034 0.051 0.029 0.027 0.041 0.034 0.040 0.037 0.046 0.036

3 7 0.046 0.023 0.028 0.040 0.031 0.040 0.045 0.039 0.020 0.030 0.069 0.042 0.037

4 5 0.041 0.033 0.041 0.038 0.036 0.031 0.056 0.032 0.026 0.034 0.049 0.029 0.054

4 6 0.035 0.037 0.032 0.039 0.041 0.033 0.032 0.039 0.042 0.031 0.049 0.039 0.058

4 7 0.031 0.032 0.046 0.038 0.039 0.042 0.033 0.056 0.046 0.027 0.027 0.036 0.036

5 6 0.048 0.036 0.026 0.031 0.033 0.039 0.037 0.027 0.037 0.045 0.032 0.040 0.041

5 7 0.030 0.051 0.043 0.031 0.034 0.041 0.048 0.032 0.053 0.037 0.024 0.029 0.045

6 7 0.032 0.033 0.030 0.038 0.032 0.035 0.047 0.050 0.049 0.033 0.057 0.050 0.021

i j 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 0.034 0.052 0.037 0.030 0.037 0.054 0.021 0.018 0.052 0.052 0.043 0.042 0.046

1 3 0.031 0.037 0.038 0.050 0.039 0.040 0.026 0.037 0.044 0.043 0.023 0.045 0.032

1 4 0.039 0.040 0.032 0.041 0.028 0.019 0.071 0.038 0.040 0.034 0.045 0.026 0.052

1 5 0.042 0.032 0.038 0.037 0.032 0.045 0.045 0.033 0.041 0.043 0.035 0.028 0.063

1 6 0.040 0.030 0.028 0.071 0.051 0.033 0.036 0.047 0.029 0.037 0.046 0.041 0.027

1 7 0.040 0.032 0.049 0.037 0.035 0.035 0.039 0.023 0.043 0.035 0.041 0.042 0.027

2 3 0.054 0.040 0.028 0.031 0.039 0.033 0.052 0.046 0.037 0.026 0.028 0.036 0.048

2 4 0.047 0.034 0.027 0.038 0.047 0.042 0.026 0.038 0.029 0.046 0.040 0.061 0.025

2 5 0.034 0.026 0.035 0.038 0.048 0.035 0.033 0.032 0.040 0.041 0.045 0.033 0.036

2 6 0.033 0.034 0.036 0.036 0.048 0.040 0.041 0.049 0.058 0.028 0.021 0.043 0.049

2 7 0.042 0.037 0.041 0.059 0.031 0.027 0.043 0.046 0.028 0.021 0.044 0.048 0.040

3 4 0.037 0.045 0.033 0.028 0.029 0.073 0.026 0.040 0.040 0.026 0.043 0.042 0.043

3 5 0.035 0.029 0.036 0.044 0.055 0.034 0.033 0.046 0.041 0.024 0.041 0.067 0.037

3 6 0.023 0.043 0.074 0.047 0.033 0.043 0.030 0.026 0.042 0.045 0.032 0.035 0.040

3 7 0.035 0.035 0.035 0.028 0.048 0.033 0.035 0.041 0.038 0.052 0.038 0.029 0.062

4 5 0.032 0.041 0.036 0.032 0.046 0.035 0.039 0.042 0.038 0.034 0.043 0.036 0.048

4 6 0.034 0.034 0.036 0.029 0.043 0.037 0.039 0.036 0.039 0.033 0.066 0.037 0.028

4 7 0.043 0.032 0.039 0.034 0.029 0.071 0.037 0.039 0.030 0.044 0.037 0.030 0.041

5 6 0.052 0.035 0.019 0.036 0.063 0.045 0.030 0.039 0.049 0.029 0.036 0.052 0.041

5 7 0.040 0.031 0.034 0.052 0.026 0.034 0.051 0.044 0.041 0.039 0.034 0.046 0.029

6 7 0.029 0.035 0.039 0.032 0.028 0.039 0.026 0.036 0.069 0.052 0.035 0.034 0.038

79

8.3 ASCII table

The following is a table of ASCII encodings for the standard alphabet (larger tables exist for other symbols

in common use).

ASCII Letter

01000001 A

01000010 B

01000011 C

01000100 D

01000101 E

01000110 F

01000111 G

01001000 H

01001001 I

01001010 J

01001011 K

01001100 L

01001101 M

01001110 N

01001111 O

01010000 P

01010001 Q

01010010 R

01010011 S

01010100 T

01010101 U

01010110 V

01010111 W

01011000 X

01011001 Y

01011010 Z

80

