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THANK EUGENIA AND PEOPLE FOR COMING.

One of the first theorems people ever see proved is Euclid’s result...that there are infinitely many primes.
This result can be rephrased as the fact that “there are infinitely many primes in any arithmetic progression
of common difference 1”. Many mathematicians tried to study primes in other arithmetic progressions but
Dirichlet was the one to prove the general theorem. His result says:

Theorem 1. (Dirichlet) Given any integer n ≥ 1 and any integer a coprime to n there are infinitely many
primes congruent to a mod n.

In undergrad courses on elementary number theory you prove simple cases of this result (such as for n = 4
or n = 8) using the same rough ideas as Euclid’s original proof.

Dirichlet’s original proof used the theory of what are now known as Dirichlet characters (of (Z/nZ)
×

)
and their corresponding L-series. It is quite a difficult proof but beautiful...it opened many doors in modern
analytic number theory.

After the work of Dirichlet, number theorists found more. In assigning a natural density to subsets of
primes they were able to find that actually the primes are uniformly distributed between the classes mod n
mentioned above. Roughly speaking a prime is just as likely to be congruent to 4 mod 9 as being congruent
to 7 mod 9.

In this talk we discuss a more general theorem of algebraic number theory, specifically a corollary of class
field theory, called the Cebotarev density theorem. At the end we will see how it specialises easily to prove
Dirichlet’s result.
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1 A few basics of algebraic number theory

Recall that a number field is a field K containing Q such that [K : Q] is finite.

Example 2. The fields Q, Q(
√
−5) and Q(ζn) (where ζn is a primitive nth root of unity) are all number

fields.

Each number field contains a special ring, its ring of integers OK . This ring consists of those elements of
K that satisfy a monic polynomial over Z. This ring minics the inclusion Z ⊂ Q.
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Example 3. The number field K = Q has OK = Z. The number field K = Q(
√
−5) has OK = Z[

√
−5].

The number field Q(ζn) has OK = Z[ζn].

Unfortunately OK is not always a UFD (e.g. in Z[
√
−5] we have 6 = 2 × 3 = (1 +

√
−5)(1 −

√
−5)).

However, Dedekind restored unique factorisation by looking at the ideals rather than the elements. He found
that in OK every ideal a has a unique factorisation into prime ideals:

a = pe11 . . . pe1g

and that this factorisation is unique upto reordering of the prime ideals (this is essentially what caused the
non-unique factorisation above). What is going on here is that instead of trying to factorise an element we
are trying to factorise the multiplies of the element as an object in its own right.

We can define the norm of an ideal a to be N(a) = |OK/a|. This is always finite and is multiplicative.

Example 4. In K = Q we have N(aZ) = |Z/aZ| = |a| for any integer a.

What happens when we have an extension L/K of number fields?

Well we have a kind of covering. Each prime ideal p of OK can be “lifted” to an ideal pOL of OL. This new
ideal may or may not be prime but since OL has unique factorisation of ideals we are definately guaranteed
a factorisation:

pOL = qe11 . . . qegg .

It is actually quite rare to see any ei > 1. When this happens we say that p ramifies in L. This fits the
notion of ramification in our covering analogy.

ROOM FOR EXAMPLES OF SPLITTING/RAMIFICATION.
ANY QUESTIONS?

2 Frobenius elements

From now on we assume that L/K is a Galois extension.

The nice thing here is that the Galois group Gal(L/K) acts transitively on the primes qi dividing pOL

via qi 7−→ σ(qi) = {σ(x) |x ∈ qi}. This, along with unique factorisation tells us that the ei’s are all equal!

So factorisation of pOL in a Galois extension is nicer:

pOL = (q1...qg)
e

for some e ≥ 1. In fact eg|[L : K] so that there are only finitely many possibilities for e and g.

Now that we have a group action we can construct the stabilizer subgroup for each qi. We call these
groups the decomposition groups:

Dqi/p = {σ ∈ Gal(L/K) |σ(qi) = qi}.

These groups contain lots of information about the splitting of primes.

COMPLICATED BIT

The fact that every element of Dqi/p stabilizes qi tells us that we have a well-defined automorphism of
fields for each σ ∈ Dqi/p:

σ̄ : OL/qi −→ OL/qi,
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defined by:
σ̄(x+ qi) = σ(x) + qi.

Further we can view OK/p as a subfield of OL/qi and each of these automorphisms fix this subfield.

So putting all of this together, we get an homomorphism:

Dqi/p −→ Gal((OL/qi)/(OK/p))

σ 7−→ σ̄

Non-trivial fact: This is a surjection. Actually if p is unramified in L then it is an isomorphism!

But the Galois group on the right is isomorphic to a Galois group of finite fields Gal(Fqf /Fq) (since both of
OL/qi and OK/p can be shown to be finite fields). Such Galois groups are cyclic, generated by the Frobenius
automorphism x 7→ xq.

So what we have here is that whenever p is unramified in L there must be some unique generator of Dqi/p

that induces the Frobenius automorphism in Gal((OL/qi)/(OK/p)). This element is called the Frobenius

element of qi, denoted
(
L/K
qi

)
and by definition satisfies:(

L/K

qi

)
(x) ≡ xN(p) mod qi

for all x ∈ OL.

END OF COMPLICATED BIT

All you have to know from this bit is that we are assigning a nice element of the Galois group to every
such qi in the factorisation of pOL and such an element satisfies the above congruence. We will see an
example soon.

Actually, given two prime ideals qi, qj in the factorisation of p we can relate their Frobenius elements by
conjugation: (

L/K

qj

)
= σ

(
L/K

qi

)
σ−1

where σ ∈Gal(L/K) is such that σ(qi) = qj (this σ exists by transitivity of the action!).

Note: If Gal(L/K) is abelian (i.e. L/K is an abelian extension) then all of the Frobenius elements are
equal! In this case the Frobenius element is really something ”belonging to p” and so we may denote it as(
L/K
p

)
.

ANY QUESTIONS?

3 Cebotarev density theorem

We are now going to see that the Frobenius elements have a nice distribution inside of the Galois group.
Cebotarev found that we learn quite a lot about unramified prime ideals by studying their Frobenius elements.
We only state the theorem in abelian Galois extensions of number fields, but there is a more general version
of the theorem for any Galois extension of number fields.
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Theorem 5. (Cebotarev) Let L/K be an abelian Galois extension of number fields and pick any σ ∈Gal(L/K).

Then σ =
(
L/K
p

)
for infinitely many prime ideals p of OK that are unramified in L. (Further the Dirichlet

density of this set of prime ideals is 1
[L:K])

So this theorem is basically telling us that the Frobenius elements, whenever they are well-defined, are
distributed uniformly over the whole of the Galois group. The proof of the Cebotarev density theorem is
itself quite complicated and relies on heavy machinery from class field theory. It is quite a handy result to
have as we will now see.

ANY QUESTIONS?

4 Application to Dirichlet’s theorem

In order to see how Dirichlet’s theorem follows from the Cebotarev density theorem we are going to take
K = Q and L = Q(ζn) for some primitive nth root of unity ζn.

Well known facts:

• [Q(ζn) : Q] = φ(n) = |(Z/nZ)×|

• Q(ζn)/Q is a Galois extension thus Gal(Q(ζn)/Q) ∼= (Z/nZ)× (which is abelian). The isomorphism is
via:

(σa : ζn 7→ ζan) 7−→ ā.

• The primes of OK = Z that ramify in Q(ζn) are exactly the ones dividing n.

Let’s fix an a ∈ Z such that a is coprime to n. Then we have a corresponding σa ∈Gal(Q(ζn)/Q).

The Cebotarev density theorem now tells us that σa =
(

Q(ζn)/Q
pZ

)
for infinitely many primes p ∈ Z (ig-

noring ones that divide n since they ramify).

But what exactly are the Frobenius elements here?

We know that for such primes p they satisfy:(
Q(ζn)/Q

pZ

)
(x) ≡ xN(pZ) ≡ x|Z/pZ| ≡ xp mod q,

for all x ∈ OL = Z[ζn], where q is just some prime ideal in OL that appears in the factorisation of pOL.

We can see that when x = ζn the Frobenius element satisfies:(
Q(ζn)/Q

pZ

)
(ζn) ≡ ζpn mod q.

Now the LHS is the action of an element of the Galois group on ζn, so must be some other primitive nth root
of unity. However it turns out that the primitive nth roots of unity are distinct mod q (the polynomial xn−1
is separable mod p) so that really the congruence is an equality. Hence the Frobenius element of p really is σp.

So now we know that σa = σp for infinitely many primes. Since σa matters only upto congruence mod
n we find that this is the same as saying that there are infinitely many primes p ≡ a mod n. This concludes
the proof.

Actually we get a little extra knowledge from the Cebotarev density theorem. It tells us that the primes are
distributed evenly over all classes of (Z/nZ)

×
.
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